K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+.......+\frac{15}{74.77}\)

\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+.......+\frac{3}{74.77}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+.....+\frac{1}{74}-\frac{1}{77}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{77}\right)\)

\(=5\left(\frac{7}{77}-\frac{1}{77}\right)\)

\(=5.\frac{6}{77}\)

\(=\frac{30}{77}\)

12 tháng 3 2017

theo bài ra ta có:

\(E=\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{74.77}\\ \Rightarrow\dfrac{1}{5}E=\dfrac{3}{11.14}+\dfrac{3}{14.17}+\dfrac{3}{17.20}+...+\dfrac{3}{74.77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{74}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{1}{11}-\dfrac{1}{77}\\ \dfrac{1}{5}E=\dfrac{7}{77}-\dfrac{1}{77}=\dfrac{6}{77}\\ \Rightarrow E=\dfrac{6}{77}.5\\ E=\dfrac{30}{77}\)

5 .\((\)\(\dfrac{3}{11.14}+\dfrac{3}{14.17}+...+\dfrac{3}{74.77}\))

= 5. (\(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+...+\dfrac{1}{74}-\dfrac{1}{77}\))

= 5.(\(\dfrac{1}{11}-\dfrac{1}{77}\))

= 5. \(\dfrac{6}{77}\)

= \(\dfrac{30}{77}\)

3 tháng 3 2017

\(\frac{15}{11.14}+\frac{15}{14.17}+\frac{15}{17.20}+...+\frac{15}{72.75}\)

\(=5\left(\frac{3}{11.14}+\frac{3}{14.17}+\frac{3}{17.20}+...+\frac{3}{72.75}\right)\)

\(=5\left(\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+...+\frac{1}{72}-\frac{1}{75}\right)\)\(=5\left(\frac{1}{11}-\frac{1}{75}\right)\)

\(=\frac{64}{165}\)

3 tháng 3 2017

pài này gần giống pài troq v15

17 tháng 8 2017

\(\dfrac{15}{11.14}+\dfrac{15}{14.17}+\dfrac{15}{17.20}+...+\dfrac{15}{68.71}\)

\(=5\left(\dfrac{1}{11}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{20}+...+\dfrac{1}{68}-\dfrac{1}{71}\right)\)

\(=5\left(\dfrac{1}{11}-\dfrac{1}{71}\right)\)

\(=5.\dfrac{60}{781}\)

\(=\dfrac{300}{781}\)

7 tháng 7 2017

Ta có : \(\frac{15}{5.8}-\frac{15}{8.11}-\frac{15}{11.14}-......-\frac{15}{47.45}\)

\(=\frac{3}{8}-\left(\frac{15}{8.11}+\frac{15}{11.14}+\frac{15}{14.17}+......+\frac{15}{47.50}\right)\)

\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+.....+\frac{11}{47}-\frac{1}{50}\right)\)

\(=\frac{3}{8}-\left(\frac{1}{8}-\frac{1}{50}\right)\)

\(=\frac{3}{8}-\frac{1}{8}+\frac{1}{50}\)

\(=\frac{1}{4}+\frac{1}{50}=\frac{27}{100}\)

18 tháng 9 2020

\(3x-\frac{15}{5\cdot8}-\frac{15}{8\cdot11}-\frac{15}{11\cdot14}-...-\frac{15}{47\cdot50}=2\frac{1}{10}\)

<=> \(3x-5\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+\frac{3}{11\cdot14}+...+\frac{3}{47\cdot50}\right)=\frac{21}{10}\)

<=> \(3x-5\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{47}-\frac{1}{50}\right)=\frac{21}{10}\)

<=> \(3x-5\left(\frac{1}{5}-\frac{1}{50}\right)=\frac{21}{10}\)

<=> \(3x-5\cdot\frac{9}{50}=\frac{21}{10}\)

<=> \(3x-\frac{9}{10}=\frac{21}{10}\)

<=> \(3x=3\)

<=> \(x=1\)

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)

\(\Rightarrow A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{50-49}{49.50}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow A=1-\frac{1}{50}=\frac{49}{50}\)

B=\(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{14.17}+\frac{3}{17.20}\)

\(\Rightarrow B=\frac{5-2}{2.5}+\frac{8-5}{5.8}+...+\frac{17-14}{14.17}+\frac{20-17}{17.20}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}\)

\(\Rightarrow B=\frac{1}{2}-\frac{1}{20}=\frac{10}{20}-\frac{1}{20}=\frac{9}{20}\)

8 tháng 11 2016

Gọi phần (.....) là x, ta có:

\(\frac{8}{15}+\frac{4}{15}+\frac{6}{15}=x\cdot\frac{2}{15}\)

\(\Rightarrow\frac{18}{15}=x\cdot\frac{2}{15}\)

\(\Rightarrow x\cdot\frac{2}{15}=\frac{18}{15}\)

\(\Rightarrow x=\frac{18}{15}:\frac{2}{25}\)

\(\Rightarrow x=9\)

Vậy x=9.