Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3S=3/2.5+3/5.8+3/8.11+...+3/101.104
3S=1/2-1/5+1/5-1/8+1/8-1/11+...+1/101-1/104
3S=1/2-1/104
S=51/104:3
S=17/104
Vậy S=17/104
\(S=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+........+\frac{1}{101.104}\)
\(\Rightarrow3S=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+.......+\frac{1}{101.104}\right)\)
\(=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+........+\frac{3}{101.104}\)
\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+.........+\frac{1}{101}-\frac{1}{104}\)
\(=\frac{1}{2}-\frac{1}{104}\)
\(=\frac{51}{104}\)
\(\Rightarrow S=\frac{51}{104}:3=\frac{51}{104}.\frac{1}{3}\)
\(=\frac{7}{104}\)
VẬY \(S=\frac{7}{104}\)
\(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{90}=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{9\cdot10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=1-\frac{1}{10}=\frac{9}{10}\)
\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+\frac{1}{6}-\frac{1}{7}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\)
\(=\frac{1}{1}-\frac{1}{10}=\frac{9}{10}\)
1/2 + 1/3 = 2/6 + 3/6 = 5/6
1/2 + 1/3 + 1/4 = 5/6 + 1/4 = 20/24 + 6/24 = 13/12
1/2 + 1/3 + 1/4 + 1/5 = 13/12 + 1/5 =65/60 + 12/60 = 77/60
ta co
1/2.2<1/1*2
...
1/2018*2018<1/2017*2018
=>1/2*2+...+1/2018*1018<1/1*2+...+1/2017.2018
.....(tinh 1/1*2+...+1/2017.*2018)
=>1/2*2+...+1/2018*2018<1-1/2018<1
=>1/2*2+...+1/2018*2018<1
A=1999/2000
B=199/200
C=511/512
hok tốt
Đáp án
mình lười trình bày cách làm lém, để đáp án thui nha
A = \(\frac{1999}{2000}\)
B = \(\frac{199}{200}\)
C = \(\frac{511}{512}\)
Đặt C = \(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{2015.2018}\)
\(\Rightarrow3C=\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{2015.2018}\)
\(\Rightarrow3C=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{2015}-\frac{1}{2018}\)
\(\Rightarrow3C=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)
\(\Rightarrow C=\frac{504}{1009}:3=\frac{168}{1009}\)
Vậy \(C=\frac{168}{1009}\)