K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2019

\(ĐK:x\ne0;x\ne-6\)

\(\frac{720\left(x+6\right)}{6x\left(x+6\right)}=\frac{6x\left(x+6\right)}{6x\left(x+6\right)}+\frac{x\left(x+6\right)}{6x\left(x+6\right)}+\frac{6x\left(120-x\right)}{6x\left(x+6\right)}\)

\(\Rightarrow720x+4320=6x^2+36x+x^2+6x+720x-6x^2\)

\(\Leftrightarrow6x^2+36x+x^2+6x+720x-6x^2-720x-4320=0\)

\(\Leftrightarrow x^2+42x-4320=0\)

\(\Leftrightarrow x^2+90x-48x-4320=0\)

\(\Leftrightarrow\left(x+90\right)\left(x-48\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+90=0\\x-48=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-90\\x=48\end{matrix}\right.\) ( tm )

3 tháng 8 2019

\(\Leftrightarrow\frac{200\left(x+20\right)}{2x\left(x+20\right)}-\frac{240x}{2x\left(x+20\right)}=\frac{x\left(x+20\right)}{2x\left(x+20\right)}\) đk: x\(\ne0\) , x \(\ne-20\)

\(\Rightarrow200x+4000-240x=x^2+20x\)

\(\Leftrightarrow-x^2-60x+4000=0\)

\(\Leftrightarrow x^2+60x-4000=0\)

\(\Leftrightarrow x^2+100x-40x-4000=0\)

\(\Leftrightarrow\left(x+100\right)\left(x-40\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+100=0\\x-40=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-100\left(tmđk\right)\\x=40\left(tmđk\right)\end{matrix}\right.\)

Vậy S\(=\left\{-100;40\right\}\)

3 tháng 8 2019

\(\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2}\)

\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}=\frac{1}{2},x\ne0,x\ne-20\)

\(\Leftrightarrow\frac{100}{x}-\frac{120}{x+20}-\frac{1}{2}=0\)

\(\Leftrightarrow\frac{200\left(x+20\right)-240x-x\left(x+20\right)}{2x\left(x+20\right)}=0\)

\(\Leftrightarrow\frac{200x+4000-240x-x^2-20x}{2x\left(x+20\right)}=0\)

\(\Leftrightarrow-60x+4000-x^2=0\)

\(\Leftrightarrow-x^2-60x+4000=0\)

\(\Leftrightarrow x^2+60x-4000=0\)

\(\Leftrightarrow\frac{-60\pm\sqrt{60^2}-4.1\left(-4000\right)}{2}\)

\(\Leftrightarrow\frac{-60\pm\sqrt{3600+16000}}{2}\)

\(\Leftrightarrow\frac{-60\pm\sqrt{19600}}{2}\)

\(\Leftrightarrow\frac{-60\pm140}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{-60+140}{2}\\\frac{-60-140}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=40\\x=-100\end{matrix}\right.,x\ne0,x\ne-20\)

8 tháng 3 2018

1/Tôi chỉ bt 1 câu thui thông cảm :)

P=\(\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{x^2-1}\)       ĐK:\(\hept{\begin{cases}x-1\ne0\\x+1\ne\\x^2-1\ne0\end{cases}1}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\\x\ne1\end{cases}}\)

P=\(\frac{x\left(x+1\right)+4\left(x-1\right)+4-6x}{\left(x-1\right).\left(x+1\right)}\) 

=\(\frac{x^2+x+4x-4+4-6x}{\left(x-1\right)\left(x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\)

=\(\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

^^ học tốt!

8 tháng 3 2018

1/

\(đkxđ\Leftrightarrow x\ne\pm1\)

\(P=\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{x^2-1}\)

\(=\frac{x}{x-1}+\frac{4}{x+1}+\frac{4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2+x+4x-4+4-6x}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

2/

D C E A B 1 2

Kẻ \(DE//AB\left(E\in AC\right)\)

\(\Rightarrow\frac{DE}{AB}=\frac{EC}{AC}\)

\(\Delta ADE\)đều (vì .............)\(\Rightarrow AD=AE=DE\)

\(\Rightarrow\frac{AD}{AB}=\frac{AC-AE}{AC}\)mà \(AE=AD\)

\(\Rightarrow\frac{AB}{AB}=1-\frac{AD}{AC}\)

\(\Rightarrow\frac{AD}{AB}+\frac{AD}{AC}=1\)

\(\Rightarrow AD\left(\frac{1}{AB}+\frac{1}{AC}\right)=1\)

\(\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\left(ĐPCM\right)\)

13 tháng 8 2020

a) \(\frac{1}{x+2}+\frac{2}{x+3}=\frac{6}{x+4}\)

ĐKXĐ \(x\ne-2,-3,-4\)

=> \(\frac{1}{x+2}+\frac{2}{x+3}-\frac{6}{x+4}=0\)

=> \(\frac{3x+7}{\left(x+2\right)\left(x+3\right)}-\frac{6}{x+4}=0\)

=> \(\frac{\left(3x+7\right)\left(x+4\right)-6\left(x+2\right)\left(x+3\right)}{\left(x+2\right)\left(x+3\right)\left(x+4\right)}=0\)

=> (3x + 7)(x + 4) - 6(x2 + 5x + 6) = 0

=> 3x2 + 19x + 28 - 6x2 - 30x - 36 = 0

=> -3x2 - 11x - 8 = 0

=> -3x2 - 3x - 8x - 8 = 0

=> -3x(x + 1) - 8(x + 1) = 0

=> (x + 1)(-3x - 8) = 0

=> \(\orbr{\begin{cases}x=-1\\x=-\frac{8}{3}\end{cases}}\)

Vậy ...

b) Thiếu dữ liệu cuả đề 

c) \(\frac{6x+22}{x+2}-\frac{2x+7}{x+3}=\frac{x+4}{x^2+5x+6}\)

ĐKXĐ \(x\ne-2;-3\)

=> \(\frac{\left(6x+22\right)\left(x+3\right)-\left(x+2\right)\left(2x+7\right)}{\left(x+2\right)\left(x+3\right)}=\frac{x+4}{\left(x+2\right)\left(x+3\right)}\)

=> \(6x^2+40x+66-x\left(2x+7\right)-2\left(2x+7\right)=x+4\)

=> \(6x^2+40x+66-2x^2-7x-4x-14=x+4\)

=> 4x2 + 29x + 52 = x + 4

=> 4x2 + 29x + 52 - x - 4 = 0

=> 4x2 + 28x + 48 = 0

=> 4(x2 + 7x + 12) = 0

=> x2 + 7x +12 = 0

=> x2 + 3x + 4x + 12 = 0

=> x(x + 3) + 4(x + 3) = 0

=> (x + 3)(x + 4) = 0

=> \(\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\) 

Mà \(x\ne-2,-3\)nên x = -3 loại

Vậy x = -4

1) Ta có: x-4=2x+4

\(\Leftrightarrow x-4-2x-4=0\)

\(\Leftrightarrow-x-8=0\)

\(\Leftrightarrow-x=8\)

hay x=-8

Vậy: S={8}

2) Ta có: \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)

\(\Leftrightarrow\frac{3\left(2x-1\right)}{6}-\frac{2x}{6}=\frac{6x}{6}-\frac{x}{6}\)

\(\Leftrightarrow3\left(2x-1\right)-2x-6x+x=0\)

\(\Leftrightarrow6x-3-2x-6x+x=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: S={-3}

3) ĐKXĐ: \(x\notin\left\{\frac{-1}{2};3\right\}\)

Ta có: \(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-3\right)}{\left(2x+1\right)\left(x-3\right)}-\frac{x\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

Suy ra: \(x^2-9-\left(2x^2+x\right)-3x^2-x-9=0\)

\(\Leftrightarrow-2x^2-x-18-2x^2-x=0\)

\(\Leftrightarrow-4x^2-2x-18=0\)

\(\Leftrightarrow-4\left(x^2+\frac{1}{2}x+\frac{4}{5}\right)=0\)

\(\Leftrightarrow x^2+\frac{1}{2}x+\frac{4}{5}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{59}{80}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4}\right)^2+\frac{59}{80}=0\)(vô lý)

Vậy: S=\(\varnothing\)

4) Ta có: \(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)

\(\Leftrightarrow\frac{4x}{6}+\frac{2x-1}{6}=\frac{24}{6}-\frac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x-1-24+2x=0\)

\(\Leftrightarrow8x-25=0\)

\(\Leftrightarrow8x=25\)

hay \(x=\frac{25}{8}\)

Vậy: \(S=\left\{\frac{25}{8}\right\}\)

6 tháng 2 2017

1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~

\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

6 tháng 2 2017

Mấy bài kia sao cái phương trình dài thê,s giải sao nổi

2 tháng 3 2020

\(M=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)\)

\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

Dấu "=" xảy ra khi \(x\in\left\{0;-5\right\}\)

2 tháng 3 2020

Giải PT \(\frac{x-6}{2010}+\frac{x-603}{471}+\frac{x-1}{403}=9\)

\(\Leftrightarrow\frac{x-6}{2010}+\frac{x-603}{471}+\frac{x-1}{403}-9=0\)

\(\Leftrightarrow\left(\frac{x-6}{2010}-1\right)+\left(\frac{x-603}{471}-3\right)+\left(\frac{x-1}{403}-5\right)=0\)

\(\Leftrightarrow\frac{x-2016}{2010}+\frac{x-2016}{471}+\frac{x-2016}{403}=0\)

\(\Leftrightarrow\left(x-2016\right)\left(\frac{1}{2010}+\frac{1}{471}+\frac{1}{403}\right)=0\)

Mà \(\left(\frac{1}{2010}+\frac{1}{471}+\frac{1}{403}\right)\ne0\)

\(\Leftrightarrow x-2016=0\Leftrightarrow x=2016\)

Vậy x=2016

b) \(M=\left(x-1\right)\left(x+2\right).\left(x+3\right)\left(x+6\right)\)

\(M=\left[\left(x-1\right)\left(x+6\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]\)

\(M=\left(x^2+5x-6\right).\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\)

Các bạn tự làm tiếp được rồi nhé

17 tháng 3 2019

\(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne30\\x\ne24\end{cases}}\)

Ta có \(\frac{60}{\frac{120}{x}-4}+\frac{60}{\frac{120}{x}-5}=x\)

\(\Leftrightarrow\frac{60}{\frac{120-4x}{x}}+\frac{60}{\frac{120-5x}{x}}=x\)

\(\Leftrightarrow\frac{60x}{120-4x}+\frac{60x}{120-5x}=x\)

\(\Leftrightarrow\frac{60}{120-4x}+\frac{60}{120-5x}=1\left(Do\text{ }x\ne0\right)\)    

\(\Leftrightarrow\frac{15}{30-x}=1-\frac{12}{24-x}\)

\(\Leftrightarrow\frac{15}{30-x}=\frac{24-x-12}{24-x}\)

\(\Leftrightarrow\frac{15}{30-x}=\frac{12-x}{24-x}\)

\(\Leftrightarrow360-15x=\left(12-x\right)\left(30-x\right)\)

\(\Leftrightarrow360-15x=360-42x+x^2\)

\(\Leftrightarrow x^2-27x=0\)

\(\Leftrightarrow x\left(x-27\right)=0\)

\(\Leftrightarrow x=27\left(Tm\text{ }ĐKXĐ\right)\)

ĐKXĐ: \(x\ne2;x\ne1\)

Ta có: \(\frac{4x}{x-2}-\frac{1}{x-1}=\frac{8x^2-7}{3x-6}\)

\(\Leftrightarrow\frac{4x}{x-2}-\frac{1}{x-1}-\frac{8x^2-7}{3x-6}=0\)

\(\Leftrightarrow\frac{4x\left(x-1\right)\cdot3}{\left(x-2\right)\left(x-1\right)\cdot3}-\frac{1\left(x-2\right)\cdot3}{\left(x-1\right)\left(x-2\right)\cdot3}-\frac{\left(8x^2-7\right)\left(x-1\right)}{3\left(x-2\right)\left(x-1\right)}=0\)

\(\Leftrightarrow12x\left(x-1\right)-3\left(x-2\right)-\left(8x^2-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow12x^2-12x-\left(3x-6\right)-\left(8x^3-8x^2-7x+7\right)=0\)

\(\Leftrightarrow12x^2-12x-3x+6-8x^3+8x^2+7x-7=0\)

\(\Leftrightarrow-8x^3+20x^2-8x-1=0\)

20 tháng 2 2020

x=??