Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
th1\(\hept{\begin{cases}5x-\frac{1}{2}>0\\1,25-3x>0\end{cases}}=>\hept{\begin{cases}x>\frac{1}{10}\\x< \frac{5}{12}\end{cases}}\)=>1/10<x<5/12
còn th2 vô lí
\(\frac{x+\frac{3}{2}}{x-\frac{2}{3}}\)VÌ \(x-\frac{2}{3}< x+\frac{3}{2}\)=> \(x-\frac{2}{3}< 0;x+\frac{3}{2}>0\)
=> \(\frac{-3}{2}< x< \frac{2}{3}\)=> \(x=\left\{-\frac{8}{6};-\frac{7}{6};....;\frac{3}{6}\right\}\)
HỌC TỐT NHA
Đặt S = \(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\)
=> 24S = 16S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}\)
=> 16S - S = \(2^3+\frac{1}{2}+\frac{1}{2^5}+...+\frac{1}{2^{97}}-\left(\frac{1}{2}+\frac{1}{2^5}+\frac{1}{2^9}+...+\frac{1}{2^{101}}\right)\)
=> 15S = \(2^3-\frac{1}{2^{101}}\)
=> S = \(\frac{2^3-\frac{1}{2^{101}}}{15}\)
Khi đó A = \(\frac{2^3-\frac{1}{2^{101}}}{15}:\left(2^3-\frac{1}{2^{101}}\right)=\frac{1}{15}\)
a) \(\left(\frac{2}{5}+\frac{3}{4}\right)^2=\left(\frac{8}{20}+\frac{15}{20}\right)^2=\left(\frac{23}{20}\right)^2=\frac{23^2}{20^2}=\frac{529}{400}\)
b) \(\left(\frac{5}{4}-\frac{1}{6}\right)^2=\left(\frac{15}{12}-\frac{2}{12}\right)^2=\left(\frac{13}{12}\right)^2=\frac{13^2}{12^2}=\frac{169}{144}\)
Ta có: \(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}=1\)
\(\Leftrightarrow\left(\frac{1}{x}-\frac{1}{y}-\frac{1}{z}\right)^2=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{yz}-\frac{1}{xy}-\frac{1}{zx}\right)=1\)
\(\Leftrightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\cdot\frac{x-y-z}{xyz}=1\)
\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\)
Ta có:B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}=\frac{2-1}{2}+\frac{2^2-1}{2^2}+\frac{2^3-1}{2^3}+...+1-\frac{1}{2^{100}}\)
\(=1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^{100}}=100-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(A=1-\frac{1}{2^{100}}\)
=> \(B=100-\left(1-\frac{1}{2^{100}}\right)=100-1+\frac{1}{2^{100}}=99+\frac{1}{2^{100}}>99\) (Đpcm)
\(\frac{1}{1}\)- \(\frac{2}{3}\)=\(\frac{1}{3}\)
1-2/3 =
\(\frac{1}{3}\)
.....