K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

\(\frac{1}{11^2}+\frac{1}{12^2}+\frac{1}{13^2}+\frac{1}{14^2}+...+\frac{1}{100^2}\)

\(=\frac{1}{11.11}+\frac{1}{12.12}+\frac{1}{13.13}+\frac{1}{14.14}+...+\frac{1}{100.100}\)

\(< \frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+\frac{1}{13.14}+...+\frac{1}{99.100}\)

\(=\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{10}-\frac{1}{100}\)

Vì \(\frac{1}{100}>0\Rightarrow\frac{1}{10}-\frac{1}{100}< \frac{1}{10}\)

\(\RightarrowĐPCM\)

10 tháng 4 2017

theo mình tình thi  \(\frac{1}{11^2}+\frac{1}{12^2}+......+\frac{1}{100^2}=0,08521616902\)

mà \(\frac{1}{10}=0,1\)

\(\Rightarrow0,08521515902< 0,1\)

14 tháng 2 2019

fan team GTV của chanh à

23 tháng 8 2017

\(=\frac{-\frac{1}{9}+1-\frac{2}{10}+1-\frac{3}{11}+1-...-\frac{92}{100}+1}{\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}}\)

\(=\frac{\frac{8}{9}+\frac{8}{10}+\frac{8}{11}+...+\frac{8}{100}}{\frac{1}{9}+\frac{1}{10}+...+\frac{1}{100}}\)

\(=\frac{8\left(\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}\right)}{\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+...+\frac{1}{100}}\)

= 8

23 tháng 4 2017

Gọi biểu thức phân số đó là A

Ta thấy

\(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

......................

\(\frac{1}{100^2}< \frac{1}{99.100}\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\)

Ta có công thức :                 \(\frac{a}{b.c}=\frac{a}{c-b}.\left(\frac{1}{b}-\frac{1}{c}\right)\)

Dựa vào công thức trên ta có 

\(A< 1.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)\)

\(\Rightarrow A< 1.\left(1-\frac{1}{100}\right)\)

\(\Rightarrow A< \frac{99}{100}\)

Mà \(\frac{99}{100}< 1\)

\(A< \frac{99}{100}< 1\Rightarrow A< 1\Rightarrow dpcm\)

ủng hộ nha

23 tháng 4 2017

ta có \(x^2=x.x\le\left(x-1\right)x\)\(\Rightarrow\frac{1}{x^2}< \frac{1}{\left(x-1\right)x}\)\(\frac{1}{\left(x-1\right)x}=\frac{1}{x-1}-\frac{1}{x}\)Vậy ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\)<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{99.100}=\)\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)=1-\(\frac{1}{100}\le1\)

vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}< 1\left(đpcm\right)\)

27 tháng 7 2017

sửa đề : \(\frac{9}{10!}+\frac{10}{11!}+\frac{11}{12!}+...+\frac{99}{100!}\)

\(=\frac{10-1}{10!}+\frac{11-1}{11!}+\frac{12-1}{12!}+...+\frac{100-1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{10!}+\frac{1}{10!}-\frac{1}{11!}+\frac{1}{11!}-\frac{1}{12!}+...+\frac{1}{99!}-\frac{1}{100!}\)

\(=\frac{1}{9!}-\frac{1}{100!}< \frac{1}{9!}\left(đpcm\right)\)

15 tháng 4 2018

\(b)\) Đặt \(B=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) ta có : 

\(B>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{3+3+3+3+3}{15}=\frac{3.5}{15}=\frac{15}{15}=1\)

\(\Rightarrow\)\(B>1\) \(\left(1\right)\)

Lại có : 

\(B< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{3+3+3+3+3}{10}=\frac{3.5}{10}=\frac{15}{10}< \frac{20}{10}=2\)

\(\Rightarrow\)\(B< 2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(1< B< 2\) ( đpcm ) 

Vậy \(1< B< 2\)

Chúc bạn học tốt ~ 

15 tháng 4 2018

tra loi nhah giup m nha

6 tháng 5 2018

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)

\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)

\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)

\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)

\(A< \frac{1}{2}\)

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}.\frac{2.4}{3^2}.....\frac{99.101}{100^2}\)

\(=-\frac{1.2....99}{2.3...100}.\frac{3.4....101}{2.3...100}\)

\(=-\frac{1}{100}.\frac{101}{2}=\frac{-101}{200}\)

Học good

9 tháng 4 2019

\(=-\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)

\(=-\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}...\frac{100^2-1}{100^2}\)

\(=-\frac{1.3}{2^2}\cdot\frac{2.4}{3^2}...\frac{99.101}{100^2}\)

\(=-\frac{1.2...99}{2.3...100}\cdot\frac{3.4...101}{2.3.100}\)

\(=-\frac{1}{100}\cdot\frac{101}{2}\)

\(=-\frac{101}{200}\)

5 tháng 5 2015

Mỗi số ahjng trong S đều lớn hơn \(\frac{3}{15}\) mà S có 5 số hạng nên :

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}>\frac{3}{15}.5=\frac{15}{15}=1\)

Vậy S > 1 hay 1 < S                        (1)

Mỗi số hạng trong S đều nhỏ hơn \(\frac{4}{10}\) mà S có 5 số hạng nên : 

\(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}<\frac{4}{10}.5=\frac{20}{10}=2\)

Vậy S < 2                                       (2)

Từ (1) và (2) suy ra 1 < S < 2 (điều phải chứng minh)

9 tháng 8 2017

cứ học lớp mấy vậy