Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho S=1-3+32-33+...+398-399
a. Chứng minh: S chia hêt cho 20
b. Rút gọn S, từ đó suy ra 3100 chia 4 dư 1
chịu
từ dòng cuối là sai rồi bạn à
Bạn bỏ dòng cuối đi còn lại đúng rồi
Ở tử đặt nhân tử chung căn x chung rồi lại đặt căn x +1 chung
Ở mẫu tách 3 căn x ra 2 căn x +căn x rồi đặt nhân tử 2 căn x ra
rút gọn được \(\frac{3\sqrt{x}-5}{2\sqrt{x}+1}\)
sao biểu thức khi rút gọn xấu vậy bạn ? đề có sai khum :vv, thế tìm x dài lắm bạn ạ
a, Với x > 0 ; \(x\ne1\)
\(M=\left(\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{2}{x}-\frac{2-x}{x\sqrt{x}-x}\right)\)
\(=\left(\frac{x+\sqrt{x}+x-\sqrt{x}}{x-1}\right):\left(\frac{2\sqrt{x}-2-2+x}{x\left(\sqrt{x}-1\right)}\right)\)
\(=\left(\frac{2x}{x-1}\right):\left(\frac{x+2\sqrt{x}-4}{x\left(\sqrt{x}-1\right)}\right)=\frac{2x^2}{\left(\sqrt{x}+1\right)\left(x+2\sqrt{x}-4\right)}\)
ĐK :\(\hept{\begin{cases}x>=0\\x\ne1\end{cases}}\)
Ta có: \(A=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{\sqrt{x}+1}{x-1}-\frac{2}{x-1}\right]\)
Bài 2:
a, Ta có
\(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}\)
= \(3\left|-2\right|+\left|-5\right|\)
=\(6+5\)
= 11
Vậy \(3\sqrt{\left(-2\right)^2}+\sqrt{\left(-5\right)^2}=11\)
b, Ta có
\(\sqrt{6+2\sqrt{5}}-\sqrt{5}\)
= \(\sqrt{5+2\sqrt{5}+1}-\sqrt{5}\)
= \(\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{5}\)
= \(\left|\sqrt{5}+1\right|-\sqrt{5}\)
= \(\sqrt{5}+1-\sqrt{5}=1\)
Vậy \(\sqrt{6+2\sqrt{5}}-\sqrt{5}=1\)
\(=\left(\frac{2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\frac{1}{\sqrt{x}-1}\right).\left(\frac{x+1}{x+1+\sqrt{x}}\right)\)
\(=\frac{2\sqrt{x}-x-1}{\left(\sqrt{x}-1\right)\left(x+1\right)}.\frac{x+1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}.\frac{1}{x+\sqrt{x}+1}=\frac{-\left(\sqrt{x}-1\right)}{x+\sqrt{x}+1}\)
a)\(-\frac{2}{\sqrt{1-3x}}\text{có nghĩa }\Leftrightarrow1-3x>0\)
\(\Leftrightarrow-3x>-1\Leftrightarrow x< 1\)
b)\(\sqrt{\frac{-5}{x^2+6}}\text{có nghĩa }\Leftrightarrow\frac{-5}{x^2+6}\ge0;x^2+6\ne0\)
\(\Leftrightarrow x^2+6< 0\Leftrightarrow x^2< -6\left(\text{vô lí }\right)\)
\(x\in\varnothing\)
\(\sqrt{x+5}+\frac{1}{x+5}\text{có nghĩa }\Leftrightarrow x+5>0\)
\(\Leftrightarrow x>-5\)
\(\sqrt{\left(x-1\right)\left(x-2\right)}\text{có nghĩa }\Leftrightarrow\left(x-1\right)\left(x-2\right)\ge0\)
TH1: \(\left(x-1\right)\ge0\text{ và }\left(x-2\right)\ge0\)
\(\Rightarrow x\ge2\)
TH2: \(\left(x-1\right)\le0\text{ và }\left(x-2\right)\le0\)
\(\Rightarrow x\le1\)