Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-5/8 < x/16 <-1/2
Suy ra : -10/16 < x/16 < -8/16
Suy ra : -10<x<-8 . Suy ra x thuộc { -9 }
Vậy x = -9
k cho mik nha mọi người ! Thanks
\(\frac{-5}{8}< \frac{x}{16}< \frac{-1}{2}\)
\(\Rightarrow\frac{-10}{16}< \frac{x}{16}< \frac{-8}{16}\)
\(\Rightarrow-10< x< -8\)
mà \(x\inℤ\)
\(\Rightarrow x=-9\)
vậy \(x=-9\)
\(\frac{2}{7}< \frac{x}{3}< \frac{11}{4};x\inℕ\)
=>\(\frac{12.2}{84}< \frac{28x}{84}< \frac{11.21}{84}\)
=>\(\frac{24}{84}< \frac{28x}{84}< \frac{231}{84}\)
=>24<28x<231
=>28x\(\in\){25;26;27;28;.............................;230}
=>Các số chia hết cho 28 là:28;56;84;112;140;168;196;224
=>x (thỏa mãn)\(\in\){1;2;3;4;5;6;7;8}
Vậy x\(\in\) {1;2;3;4;5;6;7;8}
\(\left(4,5m-\frac{3}{4}.5\frac{1}{3}\right).\frac{1}{12}+\frac{1}{2}x=1\frac{1}{2}\)
\(\left(4,5m-\frac{3}{4}.\frac{16}{3}\right).\frac{1}{2}.\frac{1}{6}+\frac{1}{2}x=\frac{3}{2}\)
\(\left(4,5m-\frac{48}{12}\right).\frac{1}{2}.\left(\frac{1}{6}+x\right)=\frac{3}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}:\frac{1}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{3}{2}.\frac{2}{1}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=\frac{6}{2}\)
\(\left(4,5m-4\right).\left(\frac{1}{6}+x\right)=3\)
=>3\(⋮\)\(\frac{1}{6}+x\)
=>\(\frac{1}{6}+x\)\(\in\)Ư(3)={\(\pm\)1;\(\pm\)3}
Ta có bảng:
\(\frac{1}{6}+x\) | -1 | 1 | -3 | 3 |
x | \(-1\frac{1}{6}\) | \(1\frac{1}{6}\) | \(-3\frac{1}{6}\) | 3\(\frac{1}{6}\) |
Vậy x\(\in\){\(-1\frac{1}{6}\);\(1\frac{1}{6}\);\(-3\frac{1}{6}\);\(\frac{1}{6}\)}
Chúc bn học tốt
\(a)\) \(\frac{-11}{12}< \frac{x}{12}< \frac{-3}{4}\)
\(\Leftrightarrow\)\(\frac{-11}{12}< \frac{x}{12}< \frac{-9}{12}\)
\(\Leftrightarrow\)\(-11< x< -9\)
\(\Rightarrow\)\(x=-10\)
a) ta có \(\frac{-5}{6}\)\(\times\)\(\frac{120}{25}\)< \(x\)<\(\frac{-7}{15}\)\(\times\)\(\frac{4}{9}\)\(\Rightarrow\)\(-4\)<\(x\)<\(-0,2074074074\)\(\Rightarrow\)\(-4\)<\(x\)<\(-0,2\)
mà \(x\)\(\in\)\(ℤ\)\(\Rightarrow\)\(x\)\(\in\)( -1;-2;-3)
b) ta có \(\left(\frac{-5}{3}\right)^3\)<\(x\)<\(\frac{-25}{35}\)\(\times\)\(\frac{-5}{6}\)\(\Rightarrow\)\(-4,62962963\)<\(x\)<\(0,5952380952\)
mà \(x\)\(\in\)\(ℤ\)\(\Rightarrow\)\(x\)\(\in\)(-4;-3;-2;-1;0)
ĐÚNG THÌ K CHO MK NHA
a) (x-3)+(x-2)+(x-1)+....+10+11=11
(x-3)+(x-2)+(x-1)+....+10 =0
gọi số hạng của tổng vế trái là n
(x-3+10).\(\frac{n}{2}\)=0
(x+7).n:2=0
(x+7) =0
\(\Rightarrow\)x+7=0 (do n\(\ne\)0)
x=0-7
x=-7
b) \(\frac{2}{3}\left[\frac{1}{2}+\frac{3}{4}-\frac{1}{3}\right]<=x<=4\frac{1}{3}.\left[\frac{1}{2}-\frac{1}{6}\right]\)
\(\frac{2}{3}.\frac{11}{12}<=x<=\frac{13}{3}.\frac{1}{3}\)
\(\frac{11}{18}<=x<=\frac{13}{9}\)
do x\(\in\)z nên x=1
vậy x=1
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=308-3\)
\(x=305\)
Vậy \(x=305\)
Tham khảo nhé~
\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=>\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
<=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{308}\)
<=> x+3=308
<=> x=305
1)
a)
\(\frac{-5}{6}.\frac{120}{25}< x< \frac{-7}{15}.\frac{9}{14}\)
\(\frac{-1}{1}.\frac{20}{5}< x< \frac{-1}{5}.\frac{3}{2}\)
\(\frac{-20}{5}< x< \frac{-3}{10}\)
\(\frac{-40}{10}< x< \frac{-3}{10}\)
\(\Rightarrow Z\in\left\{-4;-5;-6;-7;-8;-9;-10;...;-39\right\}\)
\(\frac{1}{2}+\frac{1}{3}-2\frac{1}{5}\le x< 4\frac{1}{5}+3\frac{1}{2}\)
\(\frac{1}{2}+\frac{1}{3}-\frac{11}{5}\le x< \frac{21}{5}+\frac{7}{2}\)
\(\frac{15}{30}+\frac{10}{30}-\frac{66}{30}\le x< \frac{42}{10}+\frac{35}{10}\)
\(-\frac{41}{30}\le x< \frac{77}{10}\)
\(-1\frac{11}{30}\le x< 7\frac{7}{10}\)
Vậy \(x\in\){ -1 ; 0 ; 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 }