Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\frac{13}{17}\)=1-\(\frac{4}{17}\); \(\frac{46}{50}\)=1-\(\frac{4}{50}\)
Vì \(\frac{4}{17}\)>\(\frac{4}{50}\)=> 1-\(\frac{4}{17}\)<1-\(\frac{4}{50}\)
Vậy\(\frac{13}{17}\)<\(\frac{46}{50}\)
a) ta thay 1-2002/2003= 1/2003 va 1-2003/2004=1/2004
ma 1/2003>1/2004 =>2002/2003<2003/2004
b) ta co -2002/2003<1<2005/2004
Ta có :
\(\frac{-2002}{2003}>-1\)
\(-1>\frac{-2005}{2004}\)
\(\Rightarrow\frac{-2002}{2003}>\frac{-2005}{2004}\)
Ta có:
\(-\frac{2002}{2003}>-1\)
\(-\frac{2005}{2004}< -1\)
=> \(-\frac{2002}{2003}>-\frac{2005}{2004}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{\frac{5}{2003}+\frac{5}{2004}-\frac{5}{2005}}-\frac{\frac{2}{2002}+\frac{2}{2003}-\frac{2}{2004}}{\frac{3}{2002}+\frac{3}{2003}-\frac{3}{2004}}\)
\(P=\frac{\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}}{5\left(\frac{1}{2003}+\frac{1}{2004}-\frac{1}{2005}\right)}-\frac{2\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}{3\left(\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2004}\right)}\)
\(P=\frac{1}{5}-\frac{2}{3}=\frac{3-10}{15}=\frac{-7}{15}\)
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}=\frac{x+2005}{2002}-\frac{x+2005}{2003}\)
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}+\frac{x+2005}{2003}-\frac{x+2005}{2002}=0\)
\(\left(x+2005\right).\left(\frac{1}{2004}-\frac{1}{2001}+\frac{1}{2003}-\frac{1}{2002}\right)=0\)
=> x + 2015 = 0
=> x = -2015
Vậy x = -2015
TL :
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}=\frac{x+2005}{2002}-\frac{x+2005}{2003}\)
\(\frac{x+2005}{2004}-\frac{x+2005}{2001}+\frac{x+2005}{2002}-\frac{x+2005}{2003}=0\)
Ta có : \(\left(x+2005\right).\left(\frac{1}{2004}-\frac{1}{2001}+\frac{1}{2003}-\frac{1}{2002}\right)=0\)
\(\Rightarrow x+2005=0\)
\(\Rightarrow x=-2005\)
a) \(\frac{2002}{2003}v\text{à}\frac{14}{13}\)
\(\frac{2002}{2003}<1;\frac{14}{15}>1\)
\(\Rightarrow\frac{2002}{2003}<\frac{14}{15}\)
b) \(\frac{-27}{463}v\text{à}\frac{-1}{-3}\)
\(\frac{-27}{463}<0;\frac{-1}{-3}=\frac{1}{3}>0\)
\(\Rightarrow\frac{-27}{463}<\frac{-1}{-3}\)
c) \(\frac{-33}{37}v\text{à}\frac{-33}{35}\)
Với phân số âm, phân số nào cùng tử mà khác mẫu, mẫu nào lớn hơn thì lớn hơn
\(\Rightarrow\frac{-33}{37}>\frac{-33}{35}\)
Do -2002/2003>-1 và -2005/2004<-1
\(\Rightarrow\)-2002/2003>-2005/2004
ta có
\(-\frac{2002}{2003}>-1>\frac{2005}{-2004}.\)
\(\Rightarrow-\frac{2002}{2003}>\frac{2005}{-2004}\)
\(\frac{2002}{2003}\)>\(\frac{2005}{-2004}\)