\(F=5\dfrac{6}{4453}.\dfrac{1}{1997}-\dfrac{2}{1997}.2\dfrac{3}{4453}\)
rút gọn bằng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt a=4453, b=1997

Ta có: \(F=5\dfrac{6}{a}\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot2\dfrac{3}{a}\)

\(=\dfrac{5a+6}{a}\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot\dfrac{2a+3}{a}\)+

\(=\dfrac{5a+6-4a-6}{ab}\)

\(=\dfrac{1}{b}\)

\(=\dfrac{1}{1997}\)

Đặt 4453=a; 1997=b

\(A=\left(5+\dfrac{6}{a}\right)\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot\left(2+\dfrac{3}{a}\right)\)

\(=\dfrac{5a+6}{a}\cdot\dfrac{1}{b}-\dfrac{2}{b}\cdot\dfrac{2a+3}{a}\)

\(=\dfrac{5a+6-4a-6}{ab}=\dfrac{a}{ab}=\dfrac{1}{b}=\dfrac{1}{1997}\)

16 tháng 9 2018

Đặt \(a=\frac{1}{4453};b=\frac{1}{1997}\)ta có :

\(5\frac{6}{4453}\cdot\frac{1}{1997}-\frac{2}{1997}\cdot2\frac{3}{4453}\)

\(=\left(5+6a\right)\cdot b-2b\left(2+3a\right)\)

\(=5b+6ab-4b-6ab\)

\(=b=\frac{1}{1997}\)

10 tháng 7 2017

Đặt \(A=2\dfrac{1}{317}.\dfrac{3}{111}-\dfrac{316}{317}.\dfrac{1}{111}-\dfrac{4}{317.111}\)

\(=\left(2+\dfrac{1}{317}\right).\dfrac{3}{111}-\left(1-\dfrac{1}{317}\right).\dfrac{1}{111}-4.\dfrac{1}{317}.\dfrac{1}{111}\)

\(=6.\dfrac{1}{111}+3.\dfrac{1}{317}.\dfrac{1}{111}-\dfrac{1}{111}+\dfrac{1}{317}.\dfrac{1}{111}-4.\dfrac{1}{317}.\dfrac{1}{111}\)

Đặt \(a=\dfrac{1}{111};b=\dfrac{1}{317}\). Khi đó

\(A=6a+3ab-a+ab-4ab=5a=\dfrac{5}{111}\)

Vậy A=\(\dfrac{5}{111}\)

9 tháng 2 2019

Ta có :

\(\dfrac{1997^2-1996^2}{1997^2+1996^2}=\dfrac{1.\left(1997+1996\right)}{1997^2+1996^2}=\dfrac{3993}{1997^2+1996^2}\)

Lại có : \(\dfrac{1}{3993}=\dfrac{3993}{3993^2}\)

Do \(3993^2=\left(1997+1996\right)^2>1997^2+1996^2\)

\(\Rightarrow\dfrac{3993}{3993^2}< \dfrac{3993}{1997^2+1996^2}\)

\(\Rightarrow\dfrac{1}{3993}< \dfrac{1997^2-1996^2}{1997^2+1996^2}\)

19 tháng 8 2017

* là dấu nhân à bn ????

19 tháng 8 2017

uk

Đặt 3179=a; 1111=b

\(K=2\dfrac{1}{a}\cdot\dfrac{3}{b}-\dfrac{a-1}{a}\cdot\dfrac{1}{b}-\dfrac{4}{a\cdot b}\)

\(=\dfrac{2a+1}{a}\cdot\dfrac{3}{b}-\dfrac{a-1}{ab}-\dfrac{4}{ab}\)

\(=\dfrac{6a+3-a+1-4}{ab}\)

\(=\dfrac{4a}{ab}=\dfrac{4}{b}=\dfrac{4}{1111}\)