K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2020

Ta có \(x^2\ge0\Rightarrow x^2+5>0\)

\(\Rightarrow x+3< 0\Leftrightarrow x< -3\)

Vậy x < -3 thì ( đề bài )

~ Học tốt ~

\(x^2-x=24\)

\(\Leftrightarrow x^2-x-24=0\)

\(\text{Δ}=\left(-1\right)^2-4\cdot1\cdot\left(-24\right)=97>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{1-\sqrt{97}}{2}\\x_2=\dfrac{1+\sqrt{97}}{2}\end{matrix}\right.\)

22 tháng 10 2017

ta có: \(x^2\left(x+4\right)^2-\left(x+4\right)^2-\left(x^2-1\right)\)

\(=\left(x+4\right)^2.\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(\left(x+4\right)^2-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+4-1\right)\left(x+4+1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\left(x+5\right)\)

Cho mình nhé hihi!!!

22 tháng 10 2017

x2(x+4)2-(x+4)2-(x2-1)

=(x+4)2  (x2-1)-(x2-1)

=(x2-1)(x2+8x+16-1)

=(x-1)(x+1)(x2+8x+15)

14 tháng 4 2020

\(\Leftrightarrow\frac{x+x-m}{x-m}+\frac{x+2-3}{x+2}=3\)\(\left(ĐKXĐ:x\ne-2,m\right)\)

\(\Leftrightarrow\frac{x}{x-m}+1-\frac{3}{x+2}+1=3\)

\(\Leftrightarrow\frac{x\left(x+2\right)-3\left(x-m\right)}{\left(x-m\right)\left(x+2\right)}=1\)

\(\Leftrightarrow x^2+2x-3x+3m=x^2-mx+2x-2m\)

\(\Leftrightarrow mx-3x+5m=0\)

\(\Leftrightarrow x=-\frac{5m}{m-3}\)(1)

Để (1) là nghiệm thì \(\frac{5m}{3-m}\ne\left(m,-2\right)\)

Giải ra thì m\(\ne-2\)

Để \(x\)<0 thì

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}5m< 0\\3-m>0\end{matrix}\right.\\\left\{{}\begin{matrix}5m>0\\3-m< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}0>m\\m>3\end{matrix}\right.\)

6 tháng 4 2020

\(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)\(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)

VT = \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\)

= \(\frac{2x-4}{2014}+1+\frac{2x-2}{2016}+1\)

= \(\frac{2x-2018}{2014}+\frac{2x-2018}{2016}\)

VP = \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)

= \(\frac{2x-1}{2017}+1+\frac{2x-3}{2015}+1\)

= \(\frac{2x-2018}{2017}+\frac{2x-2018}{2015}\)

\(\frac{2x-2018}{2014}>\frac{2x-2018}{2015}\)\(\frac{2x-2018}{2016}>\frac{2x-2018}{2017}\)

nên \(\frac{2x-4}{2014}+\frac{2x-2}{2016}\) > \(\frac{2x-1}{2017}+\frac{2x-3}{2015}\)

Chúc bn học tốt!!

1 tháng 8 2016

\(P = xy(x - 2)(y+6) + 12x^2 – 24x + 3y^2 + 18y + 36 \)

\(= x^2.y^2 + 6x^2y - 2xy^2 - 12xy – 24x + 3y^2 + 18y + 36 \)

\(= (18y + 36) + (6x2y + 12x^2) – (12xy + 24x) + (x^2y - 2xy^2 + 3y^2) \)

\(= 6(y + 2)(x^2 – 2x + 3) + y^2(x^2 – 2x + 3) \)

\(= (x^2 – 2x + 3)(y^2 + 6y +12) = [(x -1)^2 + 2][(y + 3)^2 +3] > 0 \)

Vậy P > 0 với mọi x, y thuộc  R.

1 tháng 8 2016

bạn ghi rõ hơn đc k ạ. mình k hiểu 

 

8 tháng 8 2019

1) \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow\)\(2x^2+2y^2\ge x^2+2xy+y^2\)\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

2) \(\frac{1}{xy}=\frac{1}{\left(\sqrt{xy}\right)^2}\ge\frac{1}{\left(\frac{x+y}{2}\right)^2}=4\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

9 tháng 8 2019

bạn Diệu Linh ơi, bài này bảo chứng minh điều đó là đúng chứ không bảo điều đó là giả thiết nhé bạn, nhưng cũng cảm ơn bạn vì đã giúp mình =))

29 tháng 7 2016

\(D=\left(50^2+48^2+46^2+..+2^2\right)-\left(49^2+47^2+..+1^2\right)\)

\(=50^2+48^2+46^2+..+2^2-49^2-47^2-...-1^2\)

\(=\left(50^2-49^2\right)+\left(48^2-47^2\right)+...+\left(2^2-1^2\right)\)

\(=\left(50-49\right)\left(50+49\right)+\left(48-47\right)\left(48+47\right)+...+\left(2-1\right)\left(2+1\right)\)

\(=50+49+48+47+...+1\)

=\(\frac{\left(50+1\right)\cdot50}{2}=1275\)

29 tháng 7 2016

Đặt A = 50^2 - 49^2 + 48^2 - 47^2 + ... + 2^2 - 1^2.
<=> A = (50 - 49)(50 + 49) + (48 - 47)(48 + 47) + ... + (2 - 1)(2 + 1)
= 99 + 95 + .. + 3
= (99 + 3)[(99 - 3) : 4 + 1] : 2 (cách tính tổng của dãy số cách đều)
= 1275.

(50^2+48^2+46^2+...+4^2+2^2)-(49^2+47^2+45^2+...+5^2+3^2+1^2)
=(50^2-49^2)+(48^2-47^2)+...+(2^2-1^2)
=(50+49)(50-49)+(48+47)(48-47)+...+(2+1)(2-1)=50+49+48+47+...+2+1
=\(\frac{50.51}{2}\) 
=1275