K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

- Dựng đoạn thẳng AB = 3cm

- vẽ tia Bx sao cho góc (CBx) =  45 °

- Dựng trung điểm M của BC

- Dựng đường trung trực của BC (qua M)

- Dựng tia vuông góc với Bx tại B ,cắt đường trung trực của BC tại O

- Dựng cung tròn BmC bán kính OB là cung chứa góc  45 °  vẽ trên đoạn BC

- Dựng đường tròn tâm M bán kính 2,5cm cắt cung BmC lần lượt tại A và A’

- Nối AB , AC (hoặc A’B , A’C) ta có:  ∆ ABC ( ∆ A’BC) có BC = 3cm , góc A =  45 ° (hoặc góc (A' ) =45°) và trung tuyến AM =2,5cm

18 tháng 4 2018

-Lấy G là trung điểm của CD. 
-Ta có: MG là đường trung bình tam giác BDC nên MG=1/2. BD.
-Mà AM=1/2.BD nên MG=AM=> góc MGA=góc MAG=3/2. góc ACB.
-Lại có góc BAC=2.góc MAG=> góc BAC=3.góc ACB và có góc ABC=góc ACB.
=> góc BAC+góc ABC+góc ACB=5.góc ACB=180 độ.
=> góc ABC=góc ACB= 36 độ và góc BAC= 108 độ. 

19 tháng 6 2023

a)

Có 2 trung tuyến BN, CM cắt nhau suy ra \(BN\perp AM\)

Gọi G là trọng tâm tam giác ABC, ta có \(BG=\dfrac{2}{3}BN=\dfrac{2}{3}.4=\dfrac{8}{3}\left(cm\right)\)

Trong tam giác ABN vuông tại A, đường cao AG, ta có:

\(AB^2=BG.BN\) (hệ thức lượng)

\(\Rightarrow AB=\sqrt{\dfrac{8}{3}.4}=\dfrac{4\sqrt{6}}{3}\left(cm\right)\)

Tam giác ABN vuông tại A

\(\Rightarrow AN^2=BN^2-AB^2\\ \Rightarrow AN=\sqrt{4^2-\left(\dfrac{4\sqrt{6}}{3}\right)^2}=\dfrac{4\sqrt{3}}{3}\left(cm\right)\)

Mà N là trung điểm AC => AC = \(\dfrac{8\sqrt{3}}{3}\left(cm\right)\)

Áp dụng đl pytago vào tam giác ABC: 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{4\sqrt{6}}{3}\right)^2+\left(\dfrac{8\sqrt{3}}{3}\right)^2}=4\sqrt{2}\left(cm\right)\)

Thừa dữ kiện AM = 3cm, bạn coi kỹ đề đủ/ đúng hết chưa thì cmt để chút mình coi lại bài giải

DD
21 tháng 6 2021

Xét tam giác \(BGA\)vuông tại \(G\)

\(BA^2=BG^2+GA^2=\frac{4}{9}\left(BE^2+AM^2\right)\Leftrightarrow BE^2+\frac{BC^2}{4}=\frac{27}{2}\)(1)

Xét tam giác \(ABE\)vuông tại \(A\)

\(BE^2=AB^2+AE^2=6+\frac{1}{4}AC^2\)(2)

Từ (1) và (2) suy ra \(BC^2+AC^2=30\)

mà \(BC^2=AC^2+6\)

suy ra \(BC^2=18\Rightarrow BC=3\sqrt{2}\left(cm\right)\).