K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2017

Đáp án B

Phương pháp: Áp dụng định luật bảo toàn động năng và động lượng

 

Cáchgiải: Đáp án B

Ta có  

 

 

 giản đồ vecto 

 

 

 

gọi b là góc hợp bởi hướng lệch của hạt X so với hướng chuyển động của hạt α ta có

 

V
violet
Giáo viên
11 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow \alpha + _3^6Li\)

Phản ứng này thu năng lượng => \(W_{thu} =(m_s-m_t)c^2 = K_t-K_s\)

=> \( K_p+ K_{Be}-K_{He}- K_{Li} = W_{thu} \) (do Be đứng yên nên KBe = 0)

=> \(K_p = W_{thu}+K_{Li}+K_{He} = 2,125+4+3,575 = 9,7MeV.\)

Áp dụng định luật bảo toàn động lượng

P P P α α p Li

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có 

Áp dụng định lí hàm cos trong tam giác

=> \(\cos {\alpha} = \frac{P_p^2+P_{He}^2-P_{Li}^2}{2P_pP_{He}} = \frac{2.1.K_p+ 2.4.K_{He}-2.6.K_{Li}}{2.2.2m_pm_{He}K_pK_{He}} = 0.\)

Với  \(P^2 = 2mK, m=A.\).

=> \(\alpha = 90^0.\)

 

6 tháng 4 2016

\(\alpha + _7^{14}N \rightarrow _1^1p + _8^{17}O\)

\(m_t-m_s = m_{\alpha}+m_N - (m_{O}+m_p) =- 1,3.10^{-3}u < 0\), phản ứng thu năng lượng.

\(W_{thu} = (m_s-m_t)c^2 = K_t-K_s\)

=> \(1,3.10^{-3}.931,5 = K_{He}+K_N- (K_p+K_O)\)(do Nito đứng yên nên KN = 0)

=> \(K_p +K_O = 6,48905MeV. (1)\)

Áp dụng định luật bảo toàn động lượng

P P α P p O

\(\overrightarrow P_{\alpha} =\overrightarrow P_{p} + \overrightarrow P_{O} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{O}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{O}K_{O} = 2m_{He}K_{He}+ 2m_pK_p.(2)\)

Từ (1) và (2) giải hệ phương trình ta được

\(K_p = 4,414MeV; K_O = 2,075 MeV.\)

 

 

 

V
violet
Giáo viên
21 tháng 4 2016


\(m_t = m_{\alpha}+ m_{Al}= 30,97585u.\)

\(m_s = m_P+ m_n = 30,97872u.\)

\(m_t < m_s\), phản ứng là thu năng lượng.

Năng lượng thu vào là 

\(E= (m_s-m_t)c^2 = 2,87.10^{-3}uc^2= 2,87.10^{-3}931 MeV/c^2.c^2 = 2,67197MeV \)

Đổi \(1 MeV = 10^6.1,6.10^{-19}J \)

=> \(2,67197 MeV= 4,275152 .10^{-13}J.\)

Tóm lại thu năng lượng \(2,67197 MeV\) hoặc thu \(4,275152 .10^{-13}J.\)

mt=ma+mAL=30,97585u

ms=mp+mn=30,97872u

mt<ms,PHẢN ỨNG LÀ THU NĂNG LƯỢNG

NĂNG LƯỢNG THU VÀO LÀ:

E=(ms-mt)c2=2,87.10-3uc2=2,87.10-3931MeV/c2.c2=2,67197 MeV

Đổi 1 MeV=106.1,6.10-19J

Suy ra:2,67197MeV=4,275152.10-3J

Đáp số:2,67197MeV hoặc 4,275152.10-13J

 

 

V
violet
Giáo viên
20 tháng 4 2016


\(m_t = m_{Na}+ m_H = 22,9837+ 1,0073 = 23,991u.\)

\(m_s = m_{He}+ m_{Ne} = 19,9869+ 4,0015 = 23,9884u.\)

=> \(m_t > m_s\), phản ứng là tỏa năng lượng.

Năng lượng tỏa ra là 

\(E = (m_t-m_s)c^2 = 2,6.10^{-3}uc^2 = 2,6.10^{-3}.931,5 = 2,4219 MeV.\)

21 tháng 4 2016

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCc

11 tháng 4 2016

\(_0^1n + _3^6 Li \rightarrow X + \alpha\)

Áp dụng định luật bảo toàn động lượng 

\(\overrightarrow P_n=\overrightarrow P_{\alpha}+ \overrightarrow P_{X} \)

    P P P He X n

Dựa theo hình vẽ ta có : \(P_{X}^2+ P_{He}^2 = P_n^2\)

=> \(2m_{X}K_{X}+2m_{\alpha} K_{\alpha} = 2m_{n}K_{n}. \)

=> \(3,01600K_{X}+4,0016 K_{\alpha} = 1,00866K_{n} = 1,109526MeV.\ \ (1)\)

Áp dụng định luật bảo toàn năng lượng toàn phần

\(K_{n}+m_{n}c^2+m_{Li}c^2 = K_{\alpha} + m_{\alpha}c^2+ K_{X}+m_{X}c^2\)

=> \(K_{\alpha} + K_{X}=K_{n}+(m_{n}+m_{Li}-m_{\alpha}-m_{X})c^2 = 1,1 + 1,36 = 0,299 meV.\ \ (2)\)

Từ (1) và (2) giải hệ phương trình

\(K_{\alpha} = 0,21 MeV; K_{X }= 0,09 MeV.\)

11 tháng 4 2016

câu c

6 tháng 8 2016

Hướng dẫn bạn:

- Lực kéo về: \(F=k.x=0,03\sqrt 2\pi\) (không biết có đúng như giả thiết của bạn không)

\(\Rightarrow x =\dfrac{0,03\sqrt 2\pi}{k}=\dfrac{0,03\sqrt 2\pi}{m.\omega^2}=\dfrac{0,03\sqrt 2\pi}{0,01.\omega^2}=\dfrac{3\sqrt 2\pi}{\omega^2}\)

- Áp dụng: \(A^2=x^2+\dfrac{v^2}{\omega^2}\)

\(\Rightarrow 0,05^2=(\dfrac{3\sqrt 2\pi}{\omega^2})^2+\dfrac{(0,4\pi)^2}{\omega^2}\)

Bạn giải pt trên tìm \(\omega \) và suy ra chu kì \(T\) nhé.

 

6 tháng 4 2016

\(_1^1p + _4^9Be \rightarrow _2^4He+ _3^6 Li\)

Áp dụng định luật bảo toàn động lượng

PPαPLip

\(\overrightarrow P_{p} =\overrightarrow P_{He} + \overrightarrow P_{Li} \)

Dựa vào hình vẽ ta có (định lí Pi-ta-go)

 \(P_{Li}^2 = P_{\alpha}^2+P_p^2\)

=> \(2m_{Li}K_{Li} = 2m_{He}K_{He}+ 2m_pK_p\)

=> \(K_{Li} = \frac{4K_{He}+K_p}{6}=3,58MeV\)

=> \(v = \sqrt{\frac{2.K_{Li}}{m_{Li}}} = \sqrt{\frac{2.3,58.10^6.1,6.10^{-19}}{6.1,66055.10^{-27}}} = 10,7.10^6 m/s.\)

 

 

13 tháng 4 2016

\(X \rightarrow Y + \alpha\)

Ban đầu X đứng yên nên ta có  \(m_{Y}K_{Y}=m_{\alpha} K_{\alpha} \)

=> \(\frac{1}{2}m_Y^2 v_Y^2 = \frac{1}{2}m_{\alpha}^2v_{\alpha}^2\)

Với \(m_Y = A_Y = A- 4; m_{\alpha} = 4.\)

=> \(v_Y = \frac{4v}{A-4}.\)

1 tháng 4 2016

Khi ban đầu đứng yên thì động lượng ban đầu của cả hệ bằng 0

Khi phân rã thì 
\(m_1v_1=m_2v_2\)
\(K=\frac{1}{2}mv^2\)
\(2Km=m^2v^2=p^2\)
\(K_1m_1=K_2m_2\)
\(\rightarrow D\)