Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(-4\approx-229^010'59"\)
b) \(\dfrac{\pi}{13}\approx13^050'21"\)
c) \(\dfrac{4}{7}\approx32^044'26"\)
a) \(23,3\) phút; \(540^0;27,6^0C\)
b) Khi lấy số trung bình làm đại diện cho các số liệu thống kê về quy mô và độ lớn, có thể xem rằng mỗi ngày bạn A đi từ nhà đến trường đều mất 23,3 phút.
Tương tự, nêu ý nghĩa số trung bình của các số liệu thống kê cho ở bảng 7 và bảng 8.
Gọi độ dài mỗi cạnh của tam giác lần lượt là x;y;z
Theo bài ra ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và x+y+z=72
theo tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{72}{12}=6\)
=> x=18
y=24
z=30
Bài 21:
Gọi độ dài 3 cạnh của tam giác đó là: a, b, c ( a, b, c > 0 )
Theo đề bài, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\) và a + b + c = 72
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{3+4+5}=\frac{72}{12}=6\)
Do đó:
\(\frac{a}{3}=6=>a=6\cdot3=18\)
\(\frac{b}{4}=6=>b=6\cdot4=24\)
\(\frac{c}{5}=6=>c=6\cdot5=30\)
Vậy độ dài 3 cạnh của tam giác đó theo thứ tự là: 18; 24; 30 ( cm ) thỏa mãn yêu cầu đề bài
Bài 22:
Gọi số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: a, b, c ( a, b, c thuộc N* )
Theo đề bài, ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}\) và c - a = 16
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{4}=\frac{b}{5}=\frac{c}{6}=\frac{c-a}{6-4}=\frac{16}{2}=8\)
Do đó:
\(\frac{a}{4}=8=>a=8\cdot4=32\)
\(\frac{b}{5}=8=>b=8\cdot5=40\)
\(\frac{c}{6}=8=>c=8\cdot6=48\)
Vậy số học sinh 3 lớp 7A, 7B, 7C theo thứ tự là: 32; 40; 48 ( học sinh ) thỏa mãn yêu cầu đề bài