Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{1995\cdot1996}\right)\)
\(=\left(1+1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{1995\cdot1996}\right)\)
\(=\left(1995\cdot1\right)-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1995}-\frac{1}{1996}\right)\)
\(=1995-\left(1-\frac{1}{1996}\right)\)
\(=1995-\frac{1995}{1996}\)
Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x
\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)
\(\Rightarrow100x\ge0\)
\(\Rightarrow x\ge0\)
Từ điều kiện trên ta có :
\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)
\(50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(50x=1-\frac{1}{100}\)
\(50x=\frac{99}{100}\)
\(x=\frac{99}{5000}\)
Do \(\left|a\right|\ge0\forall a\) nên:
\(A=\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\forall x\)
\(\Leftrightarrow100x\ge0\) hay \(x\ge0\)
Do vậy ta có: \(A=\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\) ( 50 chữ số x)
\(\Leftrightarrow A=50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)
\(\Leftrightarrow50x+\left(1-\frac{1}{100}\right)=100x\Leftrightarrow50x+\frac{99}{100}=100x\)
\(\Leftrightarrow50x=\frac{99}{100}\Leftrightarrow x=\frac{99}{100.50}=\frac{99}{5000}\)
\(D=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)
\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)
\(=2015-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=2015-\left(1-\frac{1}{2016}\right)\)
\(=2015-\frac{2015}{2016}\)
TO LẮM
Không thể quy đồng mẫu số các phân số ở VT . Cần tách mỗi phân số thành hiệu 2 phân số . Nhận xét :
Do đó : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}\)
=> Bài toán đã được cm
=\(\left(\frac{-1}{2}\right)\left(\frac{-2}{3}\right).....\left(\frac{-2014}{2015}\right)\left(\frac{-2015}{2016}\right)\)
=\(\frac{-1.-2.-3......-2014.-2015}{2.3.4......2015.2016}\)
=\(\frac{1}{2016}\)
Chúc bạn học tốt !
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2015}-1\right)\left(\frac{1}{2016}-1\right)\)
=\(\frac{-1}{2}.\frac{-2}{3}......\frac{-2014}{2015}.\frac{-2015}{2016}\)
=\(\frac{1}{2016}\)(ta rút gọn tích)
k cho mình nha!
\(\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)
=\(1-\frac{1}{1.2}+1-\frac{1}{2.3}+...+1-\frac{1}{2015.2016}\)
=\(\left(1+1+...+1\right)+\left(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2015.2016}\right)\)
=\(2015+\left(-\frac{1}{1}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2015}+\frac{1}{2016}\right)\)
=\(2015+\left(-\frac{1}{1}+\frac{1}{2016}\right)=2015+\left(\frac{-2016}{2016}+\frac{1}{2016}\right)\)
=\(2015+\frac{-2015}{2016}=\frac{4062240}{2016}+\frac{-2015}{2016}=\frac{4060225}{2016}\)