K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2015

\(\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)

=\(1-\frac{1}{1.2}+1-\frac{1}{2.3}+...+1-\frac{1}{2015.2016}\)

=\(\left(1+1+...+1\right)+\left(-\frac{1}{1.2}-\frac{1}{2.3}-...-\frac{1}{2015.2016}\right)\)

=\(2015+\left(-\frac{1}{1}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2015}+\frac{1}{2016}\right)\)

=\(2015+\left(-\frac{1}{1}+\frac{1}{2016}\right)=2015+\left(\frac{-2016}{2016}+\frac{1}{2016}\right)\)

=\(2015+\frac{-2015}{2016}=\frac{4062240}{2016}+\frac{-2015}{2016}=\frac{4060225}{2016}\)

15 tháng 7 2018

\(\left(1-\frac{1}{1\cdot2}\right)+\left(1-\frac{1}{2\cdot3}\right)+...+\left(1-\frac{1}{1995\cdot1996}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{1995\cdot1996}\right)\)

\(=\left(1995\cdot1\right)-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1995}-\frac{1}{1996}\right)\)

\(=1995-\left(1-\frac{1}{1996}\right)\)

\(=1995-\frac{1995}{1996}\)

5 tháng 10 2018

Vì GTTĐ luôn lớn hơn hoặc bằng 0 với mọi x

\(\Rightarrow\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+...+\left|x+\frac{1}{99\cdot100}\right|\ge0\)

\(\Rightarrow100x\ge0\)

\(\Rightarrow x\ge0\)

Từ điều kiện trên ta có :

\(x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{99\cdot100}=100x\)

\(50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)

\(50x=1-\frac{1}{100}\)

\(50x=\frac{99}{100}\)

\(x=\frac{99}{5000}\)

5 tháng 10 2018

Do \(\left|a\right|\ge0\forall a\) nên:

\(A=\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+...+\left|x+\frac{1}{99.100}\right|\ge0\forall x\)

\(\Leftrightarrow100x\ge0\) hay \(x\ge0\)

Do vậy ta có: \(A=\left(x+x+...+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=100x\) ( 50 chữ số x)

\(\Leftrightarrow A=50x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)=100x\)

\(\Leftrightarrow50x+\left(1-\frac{1}{100}\right)=100x\Leftrightarrow50x+\frac{99}{100}=100x\)

\(\Leftrightarrow50x=\frac{99}{100}\Leftrightarrow x=\frac{99}{100.50}=\frac{99}{5000}\)

22 tháng 6 2016

bạn coi lại đề

22 tháng 6 2016

ai giup tra loi voi

 

16 tháng 7 2019

\(D=\left(1-\frac{1}{1.2}\right)+\left(1-\frac{1}{2.3}\right)+...+\left(1-\frac{1}{2015.2016}\right)\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2015.2016}\right)\)

\(=2015-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)

\(=2015-\left(1-\frac{1}{2016}\right)\)

\(=2015-\frac{2015}{2016}\)

TO LẮM 

17 tháng 10 2019

Tuyển gái dâm

đề chưa đầy đủ

19 tháng 3 2018

à đề thiếu tổng các giá trị tuyệt đối ở trên =100x

26 tháng 10 2016

Không thể quy đồng mẫu số các phân số ở VT . Cần tách mỗi phân số thành hiệu 2 phân số . Nhận xét :

Do đó : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}=\frac{n-1}{n}\)

=> Bài toán đã được cm

28 tháng 7 2016

=\(\left(\frac{-1}{2}\right)\left(\frac{-2}{3}\right).....\left(\frac{-2014}{2015}\right)\left(\frac{-2015}{2016}\right)\)

=\(\frac{-1.-2.-3......-2014.-2015}{2.3.4......2015.2016}\)

=\(\frac{1}{2016}\)

Chúc bạn học tốt !

28 tháng 7 2016

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2015}-1\right)\left(\frac{1}{2016}-1\right)\)

=\(\frac{-1}{2}.\frac{-2}{3}......\frac{-2014}{2015}.\frac{-2015}{2016}\)

=\(\frac{1}{2016}\)(ta rút gọn tích)

k cho mình nha!