Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
x=-3.17=-51
y=-3.3=-9
câu tiếp nha:\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
x=19.2=38
y=21.2=42
Chúc bạn học tốt
\(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\)và x+y=-60
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
=>x=-3.17=-51
y=-3.3=-9
b)\(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\)và 2x-y=34
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
=>x=2.19=38
y=2.21=42
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{25}=\dfrac{x+y}{5+25}=\dfrac{60}{30}=2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{25}=2\Rightarrow y=2\times25=50\)
Vậy\(\left\{{}\begin{matrix}x=10\\y=50\end{matrix}\right.\)
b)
\(\dfrac{x}{5}=\dfrac{y}{7}\Rightarrow\left(\dfrac{x}{5}\right)^2=\left(\dfrac{y}{9}\right)^3\Rightarrow\dfrac{x}{5}\times\dfrac{x}{5}=\dfrac{x}{5}\times\dfrac{y}{7}=\dfrac{x\times y}{5\times7}=\dfrac{140}{35}=4=\left(2\right)^2\)
\(\Rightarrow\dfrac{x}{5}=2\Rightarrow x=2\times5=10\)
\(\Rightarrow\dfrac{y}{7}=2\Rightarrow y=2\times7=14\)
Vậy \(\left\{{}\begin{matrix}x=10\\y=14\end{matrix}\right.\)
\(\dfrac{x}{2}=\dfrac{y}{3}\) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}\) (1)
\(\dfrac{y}{4}=\dfrac{z}{5}\) ⇒ \(\dfrac{y}{12}=\dfrac{z}{15}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)\(=\dfrac{x+y-z}{8+12-15}\) \(=\dfrac{10}{5}=2\)
⇒ \(\left\{{}\begin{matrix}\dfrac{x}{8}=2\\\dfrac{y}{12}=2\\\dfrac{z}{15}=2\end{matrix}\right.\) ⇒\(\left\{{}\begin{matrix}x=16\\y=24\\z=30\end{matrix}\right.\)
Ta có \(\dfrac{x}{2}=\dfrac{y}{3}\) => \(\dfrac{1}{4}\cdot\dfrac{x}{2}=\dfrac{1}{4}\cdot\dfrac{y}{3}\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{1}{3}\cdot\dfrac{y}{4}=\dfrac{1}{3}\cdot\dfrac{z}{5}\Rightarrow\dfrac{y}{12}=\dfrac{z}{15}\left(2\right)\)
Từ ( 1 ) và ( 2 ) ta có
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\) và x+y-z=10
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x+y-z}{8+12-15}=\dfrac{10}{5}=2\)
\(\Rightarrow\dfrac{x}{8}=2\Rightarrow x=2\cdot8=16\)
\(\dfrac{y}{12}=2\Rightarrow=2\cdot12=24\)
\(\dfrac{z}{15}=2\Rightarrow z=2\cdot15=30\)
vậy x = 16; y = 24; z = 30
Chúc bn học tốt
Theo bài ra ta có: x/3=y/4=z/6 và x-y+2z =121
\(\Rightarrow\)z/6 = 2z/12
\(\Rightarrow\)x/3=y/4=2z/12
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}\)= \(\dfrac{y}{4}\)=\(\dfrac{2z}{12}\)= \(\dfrac{x-y+2z}{3-4+12}\)= \(\dfrac{121}{11}\)=11
+ \(\dfrac{x}{3}\)=11\(\Rightarrow\) x = 11 . 3 = 33
+ \(\dfrac{y}{4}\)=11 \(\Rightarrow\)y = 11.4 = 44
+\(\dfrac{2z}{12}\)=11 \(\Rightarrow\)2z = 11 . 12 =132
\(\Rightarrow\)z = 132 : 2 = 66
Vậy x = 33 ; y = 44 ; z = 66.
Ta có
\(\dfrac{x-3}{2008}=\dfrac{x+1}{2009}\Rightarrow2009\left(x-3\right)=2008\left(x+1\right)\)
\(\Rightarrow2009x-2009.3=2008x+2008\)
\(\Rightarrow2009x-2008x=2009.3+2008\)
\(\Rightarrow x=8035\)
Mà \(x-y=4009\)
\(\Rightarrow8035-y=4009\)
\(\Rightarrow y=4026\)
a) Ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}\) và x + y = 60
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{60}{20}=3\)
\(\dfrac{x}{17}=3\Rightarrow x=17.3=51\)
\(\dfrac{y}{3}=3\Rightarrow y=3.3=9\)
Vậy x = 51; y = 9
b) Ta có: \(\dfrac{x}{19}=\dfrac{y}{21}\Rightarrow\dfrac{2x}{38}=\dfrac{y}{21}\) và 2x - y = 34
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{2x}{38}=\dfrac{y}{21}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(\dfrac{x}{19}=2\Rightarrow x=2.19=38\)
\(\dfrac{y}{21}=2\Rightarrow y=21.2=42\)
Vậy x = 38; y = 42.
Ta có : \(\dfrac{x}{y}\) = \(\dfrac{17}{3}\) \(\Leftrightarrow\) \(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) và \(x+y\) \(=60\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{x}{17}\) = \(\dfrac{y}{3}\) = \(\dfrac{x+y}{17+3}\) = \(\dfrac{60}{20}\) = \(3\)
\(+\)) \(\dfrac{x}{17}\) \(=\)\(3\) \(\Rightarrow\) \(x=51\)
+ ) \(\dfrac{y}{3}\) \(=3\) \(\Rightarrow\) \(y=9\)
Vậy \(x=51\) ; \(y=9\)
Ta có : \(\dfrac{x}{19}\) = \(\dfrac{y}{21}\) \(\Leftrightarrow\) \(\dfrac{2x}{38}\) \(=\) \(\dfrac{y}{21}\) và \(2x-y=34\)
\(\text{Áp dụng tính chất của dãy tỉ số bằng nhau , ta được : }\)
\(\dfrac{2x}{38}\)\(=\) \(\dfrac{y}{21}\) = \(\dfrac{2x-y}{38-21}\) \(=\) \(\dfrac{34}{17}\) \(=\) \(2\)
+ ) \(\dfrac{2x}{38}\) = \(\dfrac{x}{19}\) \(=\) \(2\) \(\Rightarrow\) \(x=38\)
+ ) \(\dfrac{y}{21}\) = 2 \(\Rightarrow\) \(x=42\)
Vậy \(x=38\) ; \(x=42\)
áp dụng dãy tỉ số = nhau ta có \(\dfrac{1+x}{2}=\dfrac{4-2y}{6}=\dfrac{4+z}{5}=\dfrac{x-2y+z+1+4+4}{2+6+5}=\dfrac{11}{13}\)
\(\dfrac{1+x}{2}=\dfrac{11}{13}\Leftrightarrow13\left(1+x\right)=22\Leftrightarrow13x+13=22\Leftrightarrow x=\dfrac{9}{13}\)
\(\dfrac{2-y}{3}=\dfrac{11}{13}\Leftrightarrow13\left(2-y\right)=33\Leftrightarrow-13y+26=33\Leftrightarrow y=-\dfrac{7}{13}\)
\(\dfrac{4+z}{5}=\dfrac{11}{13}\Leftrightarrow13\left(4+z\right)=55\Leftrightarrow13z+52=55\Leftrightarrow z=\dfrac{3}{13}\)
vậy..................
Coi đề lại câu a
b,
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\\ \dfrac{x-1}{2}=\dfrac{2\left(y-2\right)}{2\cdot3}=\dfrac{3\cdot\left(z-3\right)}{3\cdot4}\\ \dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{x-1-\left(2y-4\right)+3z-9}{2-6+12}=\dfrac{x-1-2y+4+3z-9}{8}=\dfrac{\left(x-2y+3z\right)+\left(4-1-9\right)}{8}=\dfrac{14+\left(-6\right)}{8}=\dfrac{8}{8}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\\\dfrac{2y-4}{6}=1\Rightarrow2y-4=6\Rightarrow2y=10\Rightarrow y=5\\\dfrac{3z-9}{12}=1\Rightarrow3z-9=12\Rightarrow3z=21\Rightarrow z=7\end{matrix}\right.\)
Vậy x = 3; y = 5; z = 7
\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)
\(\Rightarrow\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)
\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}\)
\(=\dfrac{14-6}{14-6}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=1\\\dfrac{y-2}{3}=1\\\dfrac{z-3}{4}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
Ta có:
\(\dfrac{x}{y}=\dfrac{17}{3}=\dfrac{x}{17}=\dfrac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
=>\(\dfrac{x}{17}=-3,x=-51\)
=>\(\dfrac{y}{3}=-3,y=-9\)
Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{17}{3}\) và \(x+y=-60\)
\(\Rightarrow\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\)
\(\Rightarrow\dfrac{x}{17}=-3\Rightarrow x=-51\)
và \(\dfrac{y}{3}=-3\Rightarrow y=-9\)
Vậy \(x=-51\) và \(y=-9\)
~ Học tốt nhé bạn~
sorry mik nhầm ở phần áp dụng :
\(\dfrac{x}{17}=\dfrac{y}{3}=\dfrac{x+y}{17+3}=\dfrac{-60}{20}=-3\) ( do x + y = -60 )
+) \(\dfrac{x}{17}=-3\Rightarrow x=-3.17=-51\)
+) \(\dfrac{y}{3}=-3\Rightarrow y=-3.3=-9\)
Vậy x = -51 , y = -9
Lời giải:
\(\frac{x}{y}=\frac{17}{3}\Rightarrow \frac{x}{y}+1=\frac{17}{3}+1\)
\(\Rightarrow \frac{x+y}{y}=\frac{20}{3}\)
Thay \(x+y=-60\) ta có: \(\frac{-60}{y}=\frac{20}{3}\Rightarrow y=\frac{-60.3}{20}=-9\)
\(\Rightarrow x=-60-y=-60-(-9)=-51\)
Vậy \((x,y)=(-51, -9)\)