Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời
a)\(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...\dfrac{2}{99.101}\)
=\(2.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{99.101}\right)\)
=\(2.\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
= \(2.\left(\dfrac{1}{1}-\dfrac{1}{101}\right)\)
=\(2.\dfrac{100}{101}\)
=\(\dfrac{200}{101}\)
A=2.(1/1.3 + 1/3.5 + 1/5.7 +.......+1/99.101)
=2.(1/1 + 1/3 + 1/5 + 1/5 + 1/7 +...+1/99 + 1/101)
=2.(1-1/101)
=2.(101/101-1/101)
=2.100/101
200/101
B=2.(1/1.3+1/3.5+1/3.1+....+1/99.101)
=2.(1/1+1/3+1/3+1/5+1/3+1/7+....+1/99+1/101)
=2.(1/1+1/101)
=2.(101/101+1/101)
=2.102/101
=204/101
\(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}\\ =\dfrac{100}{101}\)
\(\dfrac{5}{1\cdot3}+\dfrac{5}{3\cdot5}+\dfrac{5}{5\cdot7}+...+\dfrac{5}{99\cdot101}\\ =\dfrac{5}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{99\cdot101}\right)\\ =\dfrac{5}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\left(1-\dfrac{1}{101}\right)\\ =\dfrac{5}{2}\cdot\dfrac{100}{101}\\ =\dfrac{250}{101}\)
\(a,\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\)
\(=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\)
\(=1-\dfrac{1}{101}\)
\(=\dfrac{100}{101}\)
\(x+8-(x+22)=x+8-x-22=8-22=-14\)
\(-(x+5)+(x+10)-5=-x-5+x+10-5=0\)
1*5* \(⋮\)2;3;5;6;9
Vì 1*5* chia hết cho 2 và 5 nên dấu sao cuối cùng=0
Ta có: 1*5* chia hết cho 6=> chia hết cho 3 và 2
1*5* chia hết cho 9
1*50 chia hết cho 9
1+*+5+0 chia hết cho 9
6+* chia hết cho 9=> *=3
vậy số cần tìm là 1350
\(\dfrac{5}{1.3}+\dfrac{5}{3.5}+\dfrac{5}{5.7}+.....+\dfrac{5}{99.101}\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}.\left(1-\dfrac{1}{101}\right)=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)
Để \(A\in Z\)thì
\(n+2⋮n-5\)
\(n-5+7⋮n-5\)
\(\Leftrightarrow7⋮n-5\)
\(\Leftrightarrow n-5\inƯ\left(7\right)\)
\(Ư\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(n\in\left\{6;4;12;-2\right\}\)
1 bỏ dấu ngoặc rồi tính :
a) x+ 8 - ( x + 22)
= x + 8 - x - 22
= -14
b) -(x+5) + (x + 10 ) - 5
= -x - 5 + x + 10 -5
= 0
a, \(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{99.101}\\ =1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ =1-\dfrac{1}{101}=\dfrac{100}{101}\)
b, \(\dfrac{5}{1.3}+\dfrac{5}{3.5}+...+\dfrac{5}{99.101}\)
\(=\dfrac{5}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{5}{2}.\dfrac{100}{101}=\dfrac{250}{101}\)
Vậy...
\(B=\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}...\dfrac{100^2}{99.101}=\dfrac{2.3.4...100}{1.2.3...99}.\dfrac{2.3.4..100}{3.4.5...101}=100.\dfrac{2}{101}=\dfrac{200}{101}\)
\(B=\dfrac{3}{1\cdot3}+\dfrac{3}{3\cdot5}+...+\dfrac{3}{99\cdot101}\)
\(=\dfrac{3}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)\)
\(=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\left(1-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\left(\dfrac{101}{101}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{100}{101}\)
\(=\dfrac{150}{101}\)
\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right)-x=-\dfrac{100}{99}\)
\(\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)-x=-\dfrac{100}{99}\)
\(\left(1-\dfrac{1}{99}\right)-x=-\dfrac{100}{99}\)
\(\dfrac{98}{99}-x=-\dfrac{100}{99}\)
\(x=\dfrac{98}{99}-\left(-\dfrac{100}{99}\right)\)
\(x=\dfrac{198}{99}\)
Vậy \(x=\dfrac{198}{99}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(A=\dfrac{1}{2}.\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(A=\dfrac{1}{2}.\left(\dfrac{100}{101}\right)-\dfrac{1}{101}\)
\(A=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{99.101}-\dfrac{1}{101}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{99.101}\right)-\dfrac{1}{101}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{101}\right)-\dfrac{1}{101}\)
\(=\dfrac{1}{2}.\dfrac{100}{101}-\dfrac{1}{101}=\dfrac{50}{101}-\dfrac{1}{101}=\dfrac{49}{101}\)
Vậy...
\(\dfrac{x}{1\cdot3}+\dfrac{x}{3\cdot5}+...+\dfrac{x}{99\cdot101}=50\)
=>\(x\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\right)=50\)
=>\(\dfrac{x}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\right)=50\)
=>\(\dfrac{x}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)=50\)
=>\(\dfrac{x}{2}\cdot\left(1-\dfrac{1}{101}\right)=50\)
=>\(x\cdot\dfrac{50}{101}=50\)
=>x=101
giúp mình với