Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{6}=\dfrac{3}{5}+\dfrac{\left(-17\right)}{30}< =>\dfrac{5x}{30}=\dfrac{18}{30}+\dfrac{\left(-17\right)}{30}=>5x=18-17=1< =>x=\dfrac{1}{5}\)
\(2\dfrac{x}{7}=\dfrac{14+x}{7}=\dfrac{75}{35}=\dfrac{15}{7}\\ \Rightarrow\left(14+x\right).7=15.7\\ 14+x=15\\ x=15-14=1\)
a) \(4,5:\left[\left(\dfrac{9-10}{6}\right)-\dfrac{9}{5}+\dfrac{12}{5}\right]-\dfrac{1}{7}\)
\(=4,5:\left(\dfrac{-1}{6}-\dfrac{-3}{5}\right)-\dfrac{1}{7}\)
=\(4,5:\left(\dfrac{-5+18}{30}\right)-\dfrac{1}{7}\)
=\(4,5:\dfrac{13}{30}-\dfrac{1}{7}\)=\(\dfrac{135}{13}-\dfrac{1}{7}=\dfrac{932}{91}\)
b) \(\dfrac{13}{3}:\left(\dfrac{1}{4}+\dfrac{5}{4}\right)-\dfrac{20}{3}\)
=\(\dfrac{13}{3}.\dfrac{2}{3}-\dfrac{20}{3}\)=\(\dfrac{26}{9}-\dfrac{20}{3}=\dfrac{26}{9}-\dfrac{60}{9}=\dfrac{-34}{9}\)
c) \(5.\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+.....+\dfrac{1}{91.94}\right)\)
\(=5.\left[\dfrac{1}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...+\dfrac{1}{91}-\dfrac{1}{94}\right)\right]\)
\(=5.\left[\dfrac{1}{3}.\left(1-\dfrac{1}{94}\right)\right]\)
=\(5.\left(\dfrac{1}{3}.\dfrac{93}{94}\right)\)
\(=5.\dfrac{31}{94}=\dfrac{155}{94}\)
Chúc bạn học tốt
\(N=\dfrac{2^{19}\cdot3^9-3\cdot3^8\cdot5\cdot2^{18}}{3^9\cdot2^9\cdot2^{10}-2^{20}\cdot3^{10}}\)
\(=\dfrac{2^{18}\cdot3^9\cdot\left(2-5\right)}{3^9\cdot2^{19}\left(1-2\cdot3\right)}=\dfrac{1}{2}\cdot\dfrac{-3}{-5}=\dfrac{3}{10}\)
\(P=\dfrac{8\cdot10+8\cdot24+8\cdot560}{6\cdot45+6\cdot108+6\cdot120\cdot21}=\dfrac{8\left(10+24+560\right)}{6\left(45+108+120\cdot21\right)}=\dfrac{4}{3}\cdot\dfrac{2}{9}=\dfrac{8}{27}\)
9) \(\dfrac{x}{4}=\dfrac{9}{x}\)
Theo định nghĩa về hai phân số bằng nhau, ta có:
\(4\cdot9=x^2\\ 36=x^2\Rightarrow\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\)
8)
\(x:\dfrac{5}{3}+\dfrac{1}{3}=-\dfrac{2}{5}\\ x:\dfrac{5}{3}=-\dfrac{2}{5}+\dfrac{1}{3}\\ x:\dfrac{5}{3}=-\dfrac{1}{15}\\ x=\dfrac{1}{15}\cdot\dfrac{5}{3}\\ x=\dfrac{1}{9}\)
7)
\(2x-16=40+x\\ 2x-x=40+16\\ x\left(2-1\right)=56\\ x=56\)
6)
\(1\dfrac{1}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}+x=\dfrac{3}{2}-7\\ \dfrac{3}{2}-\dfrac{3}{2}=-7-x\\ -7-x=0\\ x=-7-0\\ x=-7\)
5)
\(3\dfrac{1}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{7}{2}-\dfrac{1}{2}x=\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{7}{2}-\dfrac{2}{3}\\ \dfrac{1}{2}x=\dfrac{17}{6}\\ x=\dfrac{17}{6}:\dfrac{1}{2}\\ x=\dfrac{17}{3}\)
4)
\(x\cdot\left(x+1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
3)
\(\left(\dfrac{2x}{5}+2\right):\left(-4\right)=-1\dfrac{1}{2}\\ \left(\dfrac{2x}{5}+2\right):\left(-4\right)=-\dfrac{3}{2}\\ \dfrac{2x}{5}+2=-\dfrac{3}{2}\cdot\left(-4\right)\\ \dfrac{2x}{5}+2=6\\ \dfrac{2x}{5}=6-2\\ \dfrac{2x}{5}=4\\ 2x=4\cdot5\\ 2x=20\\ x=20:2\\ x=10\)
2)
\(\dfrac{1}{3}+\dfrac{1}{2}:x=-0,25\\ \dfrac{1}{3}+\dfrac{1}{2}:x=-\dfrac{1}{4}\\ \dfrac{1}{2}:x=-\dfrac{1}{4}-\dfrac{1}{3}\\ \dfrac{1}{2}:x=-\dfrac{7}{12}\\ x=\dfrac{1}{2}:-\dfrac{7}{12}\\ x=-\dfrac{6}{7}\)
1)
\(\dfrac{4}{3}+x=\dfrac{2}{15}\\ x=\dfrac{2}{15}-\dfrac{4}{3}x=-\dfrac{6}{5}\)
\(a,\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}=\dfrac{101}{1540}\)
\(\dfrac{1}{3}.3.\left[\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}+...+\dfrac{1}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)
\(\dfrac{1}{3}.\left[\dfrac{3}{5.8}+\dfrac{3}{8.11}+\dfrac{3}{11.14}+...+\dfrac{3}{x.\left(x+3\right)}\right]=\dfrac{101}{1540}\)
\(\dfrac{1}{3}.\left[\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right]=\dfrac{101}{1540}\)
\(\dfrac{1}{3}.\left(\dfrac{1}{5-1}-\dfrac{1}{x+3}\right)=\dfrac{101}{1540}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{101}{1540}.\dfrac{1}{3}\)
\(\dfrac{1}{5}-\dfrac{1}{x+3}=\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{3}-\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}=\dfrac{1}{308}\)
\(\Rightarrow x+3=308\)
\(x=308-3\)
\(x=305\)
\(b,1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{x.\left(x+1\right):2}=1\dfrac{1991}{1993}\)
\(\dfrac{1}{2}.\left(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{x.\left(x+1\right):2}\right)=\dfrac{3984}{3986}\)
\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{8}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)
\(\dfrac{2-1}{1.2}+\dfrac{4-3}{3.4}+...+x+1-\dfrac{x}{x.\left(x+1\right)}=\dfrac{3984}{3986}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}+\dfrac{1}{x+1}=\dfrac{3984}{3986}\)
\(1-\dfrac{1}{x+1}=\dfrac{3984}{3986}\)
\(\dfrac{1}{x+1}=1-\dfrac{3984}{3986}\)
\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)
=>\(x+1=1993\)
\(x=1993-1\)
\(x=1992\)
\(\left(1+\dfrac{7}{9}\right)\left(1+\dfrac{7}{20}\right)\cdot\cdot\cdot\left(1+\dfrac{7}{180}\right)=\dfrac{16}{9}\cdot\dfrac{27}{20}\cdot\cdot\cdot\dfrac{187}{180}=\dfrac{2.8}{1\cdot9}\cdot\dfrac{3\cdot9}{2\cdot10}\cdot\cdot\cdot\dfrac{11\cdot17}{10\cdot18}=\dfrac{\left(2\cdot3\cdot...\cdot11\right)\cdot\left(8\cdot9\cdot...\cdot17\right)}{\left(1\cdot2\cdot...\cdot10\right)\cdot\left(9\cdot10\cdot...\cdot18\right)}=\dfrac{11\cdot8}{1\cdot18}=\dfrac{88}{18}=\dfrac{44}{9}\)
a) 3/x-7 = 27/135
3/x-7 = 3/15
x - 7 = 15
x = 15 + 7
x = 22
a) \(\frac{3}{x-7}=\frac{27}{135}\)
\(\Rightarrow\)\(\left(x-7\right).27=3.135\)
\(\Rightarrow\)\(\left(x-7\right).27=405\)
\(\Rightarrow\)\(x-7=15\)
\(\Rightarrow\)\(x=22\)
Vậy \(x=22\)
b ) \(71+65.4=\frac{x+140}{x}+260\)
\(71+260=\frac{x+140}{x}+260\)
\(331=\frac{x+140}{x}+260\)
\(331-260=\frac{x+140}{x}\)
\(71=\frac{x+140}{x}\)
\(71=\frac{x}{x}+\frac{140}{x}\)
\(71=1+\frac{140}{x}\)
\(70=\frac{140}{x}\)
\(x=140\div70\)
\(x=20\)
Vậy \(x=20\)
#TQY
\(\dfrac{x-3}{7}=\dfrac{2x-7}{13}\)
\(7\left(2x-7\right)=13\left(x-3\right)\)
\(14x-49=13x-39\)
\(14x-13x=49-39\)
\(x=10\)