\(\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\) tìm giá trị lớn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Áp dụng BĐT Cauchy , ta có :

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

\(\dfrac{y^2}{\sqrt{1-y^2}}=\dfrac{y^3}{y\sqrt{1-y^2}}\ge\dfrac{y^3}{\dfrac{y^2+1-y^2}{2}}=2y^3\)

\(\dfrac{z^2}{\sqrt{1-z^2}}=\dfrac{z^3}{z\sqrt{1-z^2}}\ge\dfrac{z^3}{\dfrac{z^2+1-z^2}{2}}=2z^3\)

\(\Rightarrow\dfrac{x^2}{\sqrt{1-x^2}}+\dfrac{y^2}{\sqrt{1-y^2}}+\dfrac{z^2}{\sqrt{1-z^2}}\ge2\left(x^3+y^3+z^3\right)=2\)


14 tháng 7 2018

Bài 1 :

Ta có : \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}=\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\)

Theo BĐT Cô - Si dưới dạng engel ta có :

\(\dfrac{1}{3a^2+b^2}+\dfrac{4}{2b^2+6ab}\ge\dfrac{\left(1+2\right)^2}{3a^2+6ab+3b^2}=\dfrac{9}{3\left(a+b\right)^2}=\dfrac{9}{3.1}=3\)

Dấu \("="\) xảy ra khi : \(a=b=\dfrac{1}{2}\)

6 tháng 5 2018

\(T=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(\odot\) Áp dụng bất đẳng thức AM - GM ta có:

\(yz\sqrt{x-1}=yz\times\left(1\times\sqrt{x-1}\right)\le yz\times\dfrac{1+x-1}{2}=\dfrac{xyz}{2}\)

\(xz\sqrt{y-2}=\dfrac{xz}{\sqrt{2}}\times\left(\sqrt{2}\times\sqrt{y-2}\right)=\dfrac{xz}{\sqrt{2}}\times\dfrac{2+y-2}{2}=\dfrac{xyz}{2\sqrt{2}}\)

\(xy\sqrt{z-3}=\dfrac{xy}{\sqrt{3}}\times\left(\sqrt{3}\times\sqrt{z-3}\right)=\dfrac{xy}{\sqrt{3}}\times\dfrac{3+z-3}{2}=\dfrac{xyz}{2\sqrt{3}}\)

\(\odot\) Suy ra \(T\le\dfrac{\dfrac{xyz}{2}+\dfrac{xyz}{2\sqrt{2}}+\dfrac{xyz}{2\sqrt{3}}}{xyz}=\dfrac{1}{2}+\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}\)

\(\odot\) Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}1=\sqrt{x-1}\\\sqrt{2}=\sqrt{y-2}\\\sqrt{3}=\sqrt{z-3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=4\\z=6\end{matrix}\right.\)

30 tháng 9 2017

Áp dụng BĐT AM-GM:

\(VT=\sum\dfrac{\sqrt{\left(x+y\right)^2-xy}}{4yz+1}\ge\sum\dfrac{\sqrt{\left(x+y\right)^2-\dfrac{1}{4}\left(x+y\right)^2}}{\left(y+z\right)^2+1}=\sum\dfrac{\dfrac{\sqrt{3}}{2}\left(x+y\right)}{\left(y+z\right)^2+1}\)

Set \(\left\{{}\begin{matrix}x+y=a\\y+z=b\\z+x=c\end{matrix}\right.\)thì giả thiết trở thành \(a+b+c=3\) và cần chứng minh \(\dfrac{\sqrt{3}}{2}.\sum\dfrac{a}{b^2+1}\ge\dfrac{3\sqrt{3}}{4}\)

\(\Leftrightarrow\sum\dfrac{a}{b^2+1}\ge\dfrac{3}{2}\)( đến đây quen thuộc rồi)

Ta có:\(\sum\dfrac{a}{b^2+1}=\sum a-\sum\dfrac{ab^2}{b^2+1}\ge3-\sum\dfrac{ab^2}{2b}\)(AM-GM)

\(VT\ge3-\sum\dfrac{ab}{2}\ge3-\dfrac{\dfrac{1}{3}\left(a+b+c\right)^2}{2}=\dfrac{3}{2}\)( AM-GM)

Vậy ta có đpcm.Dấu = xảy ra khi a=b=c=1 hay \(x=y=z=\dfrac{1}{2}\)

30 tháng 9 2017

cảm ơn bạn nhé