Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1+1=2\)
\(2.3=6\)
\(8.72:9=576:9=64\)
\(\frac{1234+4321}{4.7+5}=\frac{5555}{28+5}=\frac{5555}{33}=\frac{505.11}{3.11}=\frac{505}{3}\)
\(4,5.5+3,2.\frac{2}{1}=22,5+6,4=28,9\)
\(2011,2012\times2000\times\left(\frac{5}{6}-\frac{1}{3}-50\%\right)\times1234+10\)
\(=2011,2012\times2000\times\left(\frac{5}{6}-\frac{1}{3}-\frac{50}{100}\right)\times1234+10\)
\(=2011,2012\times2000\times\left(\frac{5}{6}-\frac{1}{3}-\frac{1}{2}\right)\times1234+10\)
\(=2011,2012\times2000\times\left(\frac{5}{6}-\frac{2}{6}-\frac{3}{6}\right)\times1234+10\)
\(=2011,2012\times2000\times0\times1234+10\)
\(=0+10\)
\(=10\)
_Chúc bạn học tốt_
\(2011,2012.2000.\left(\frac{5}{6}-\frac{1}{3}-50\%\right).1234+10\)
\(=2011,2012.2000.\left(\frac{5-2-3}{6}\right).1234+10\)
\(=2011,2012.2000.0.1234+10\)
\(=0+10\)
\(=0 \)
1234 + 4321 =5555
6778 nhân 7 =47446
826512 - 1234 =825278
Ta có công thức tổng quát:
\(\dfrac{k}{n\cdot\left(n+k\right)}=\dfrac{1}{n}-\dfrac{1}{n+k}\)
\(a,A=\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{x\left(x+3\right)}\\ =\dfrac{1}{3}\left(\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{x\left(x+3\right)}\right)\\ =\dfrac{1}{3}\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\left(\dfrac{1}{5}-\dfrac{1}{x+3}\right)\\ =\dfrac{1}{3}\cdot\dfrac{x-2}{5\left(x+3\right)}\\ =\dfrac{x-2}{15\left(x+3\right)}\)
Theo đề bài ta có:
\(A=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{15\left(x+3\right)}=\dfrac{101}{1540}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{303}{308}\\ \Rightarrow\dfrac{x-2}{x+3}=\dfrac{305-2}{305+3}\\ \Rightarrow x=305\)
a; A = \(\dfrac{4026\times2014+4030}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2014+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2013\times2+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-4026+2015\right)}{2013\times2016-2011}\)
A = \(\dfrac{2\times\left(2013\times2016-2011\right)}{2013\times2016-2011}\)
A = 2
\(=\dfrac{7408}{12963-5555}\cdot999=999\)
\(7408/12963-5555*999=7408/7408*999=1*999=999\)