K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đề thiếu rồi bạn nhé. Bạn tham khảo ở đây.

https://hoc24.vn/cau-hoi/hep-mecho-dfracabdfraccd-chung-minhdfrac7a23ab11a2-8b2dfrac7c23cd11c2-8d2.1358224776256

Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3bk\cdot b}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)

=>\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

9 tháng 7 2023

Cho \(\dfrac{a}{b}\) như thế nào thì mới chứng minh được chứ em

9 tháng 7 2023

cho a/b =c/d nha

 

19 tháng 12 2017

Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2t^2+3b^2t}{11b^2t^2-8b^2}=\dfrac{b^2\left(7t^2+3t\right)}{b^2\left(11t^2-8\right)}=\dfrac{7t^2+3t}{11t^2-8}\\\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2t^2+3d^2t}{11d^2t^2-8d^2}=\dfrac{d^2\left(7t^2+3t\right)}{d^2\left(11t^2-8\right)}=\dfrac{7t^2+3t}{11t^2-8}\end{matrix}\right.\Rightarrowđpcm\)

9 tháng 8 2018

Ta có:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}\Rightarrow\dfrac{a.b}{c.d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a.b}{c.d}\)

\(\Rightarrow\dfrac{7a^2}{7c^2}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}=\dfrac{3a.b}{3c.d}\)

\(\Rightarrow\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\)

\(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

\(\Rightarrow\left(đpcm\right)\)

29 tháng 7 2021

Đặt  \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT:\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ VP:\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ \Rightarrow VT=VP\\ \Rightarrowđpcm\)

 

NV
29 tháng 7 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)

Ta có:

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(kb\right)^2+3\left(kb\right).b}{11\left(kb\right)^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\) (1)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(kd\right)^2+3\left(kd\right)d}{11\left(kd\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\) (2)

(1),(2) \(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)

8 tháng 12 2021

Tham khảo

cảm ơn rất nhiều

hihi

7 tháng 11 2021

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)

\(\left(1\right)\left(2\right)\RightarrowĐpcm\)

7 tháng 1 2024

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow a=bk;c=dk\)

Ta có: \(VT=\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7bk^2+3bkb}{11bk^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)

\(VP=\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7dk^2+3dkd}{11dk^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)

\(\Rightarrow VT=VP\)

Vậy \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)

7 tháng 1 2024

Nâng cao r 

mk chịu :)

 

2 tháng 8 2018

đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) thay \(a=bk;c=dk\) ta có

\(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{b\left(5k+3\right)}{b\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(1)

\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{d\left(5k+3\right)}{d\left(5k-3\right)}=\dfrac{5k+3}{5k-3}\)(2)

từ (1);(2)\(\Rightarrow\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)

b) thay \(a=bk;c=dk\) ta có

\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7(bk)^2+3bkb}{11(bk)^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}\)

\(=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(3)

\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3dkd}{11\left(dk\right)^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}\)

\(=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)(4)

từ (3);(4)\(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)