Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mấy này bạn quy đồng lên cùng mẫu xong khử mẫu rồi giải. Dễ mà.
a)\(\frac{3+2x}{2+x}-1=\frac{2-x}{2+x}\) (x khác -2)
\(\Leftrightarrow\frac{3+2x}{2+x}-\frac{2-x}{2+x}=1\)
\(\Leftrightarrow\frac{1+3x}{2+x}=1\)
\(\Leftrightarrow1+3x=2+x\)
\(\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
b) \(\frac{5-2x}{3}+\frac{x^2-1}{3}x-1=\frac{\left(x-2\right)\left(1-3x\right)}{9x-3}\) (x khác 1/3)
\(\Leftrightarrow\frac{x^3-3x+5}{3}+\frac{\left(x-2\right)\left(3x-1\right)}{3\left(3x-1\right)}=1\)
\(\Leftrightarrow\frac{x^2-2x+3}{3}=1\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)
c) \(\frac{1}{\left(3-2x\right)^2}-\frac{4}{\left(3+2x\right)^2}=\frac{3}{9-4x^2}\) (x khác +- 3/2)
\(\Leftrightarrow\frac{\left(3+2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}-\frac{4\left(3-2x\right)^2}{\left(3+2x\right)^2\left(3-2x\right)^2}=\frac{9}{\left(3+2x\right)^2\left(3-2x\right)^2}\)
\(\Leftrightarrow9+12x+4x^2-4\left(9-12x+4x^2\right)-9=0\)
\(\Leftrightarrow-12x^2+60x-36=0\)
\(\Leftrightarrow-12\left(x^2-5x+3\right)=0\Leftrightarrow x^2-5x+3=0\)
\(\Rightarrow\Delta=b^2-4ac=25-12=13>0\)
\(x_1=\frac{-b+\sqrt{\Delta}}{2ac}=\frac{5+\sqrt{13}}{6}\)
\(x_2=\frac{5-\sqrt{13}}{6}\)
d) \(\frac{1}{x^2+2x+1}=\frac{4}{x+2x^2+x^3}=\frac{5}{2x+2x^2}\)
\(\Leftrightarrow\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x^2+2x+1}{1}=\frac{x+2x^2+x^3}{4}=\frac{2x+2x^2}{5}=\frac{x^2+2x+1-\left(x+2x^2+x^3\right)+2x+2x^2}{1-4+5}\)
(dấu bằng thứ nhất của câu d là dấu cộng à???)
1)\(-\dfrac{4x-3}{x-5}=\dfrac{29}{3}\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\)
\(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\Leftrightarrow9-12x=29x-145\)
\(\Leftrightarrow29x+12x=9+145\Leftrightarrow41x=154\Leftrightarrow x=\dfrac{154}{41}\)
2)\(\dfrac{2x-1}{5-3x}=2\Leftrightarrow2\left(2x-1\right)=5-3x\)
\(\Leftrightarrow4x-2=5-3x\)
\(\Leftrightarrow4x+3x=5+2\Leftrightarrow7x=7\Leftrightarrow x=1\)
3)\(\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1}\)
\(\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\)
\(\Rightarrow4x-5=2x-2+x\)
\(\Leftrightarrow4x-2x-x=-2+5\)
\(\Leftrightarrow x=3\)
\(1)-\dfrac{4x-3}{x-5}=\dfrac{29}{3} (x \neq 5) \\\Leftrightarrow\dfrac{3-4x}{x-5}=\dfrac{29}{3}\) \(\Leftrightarrow3\left(3-4x\right)=29\left(x-5\right)\\\Leftrightarrow9-12x=29x-145\) \(\Leftrightarrow29x+12x=9+145\\\Leftrightarrow41x=154\\\Leftrightarrow x=\dfrac{154}{41}(TM)\)
Vậy \(S=\left\{\dfrac{154}{41}\right\}\)
\(2)\dfrac{2x-1}{5-3x}=2 (x \neq \dfrac{5}{3}) \)
\(\Leftrightarrow2x-1=2\left(5-3x\right)\\ \Leftrightarrow2x-1=10-6x\\ \Leftrightarrow2x+6x=10+1\\ \Leftrightarrow8x=11\\ \Leftrightarrow x=\dfrac{11}{8}\left(TM\right)\)
Vậy \(S=\left\{\dfrac{11}{8}\right\}\)
\(3)\dfrac{4x-5}{x-1}=2+\dfrac{x}{x-1} (x \neq 1) \\\Leftrightarrow\dfrac{4x-5}{x-1}=\dfrac{2\left(x-1\right)}{x-1}+\dfrac{x}{x-1}\) \(\Leftrightarrow4x-5=2x-2+x\) \(\Leftrightarrow4x-2x-x=-2+5\) \(\Leftrightarrow x=3(TM)\)
Vậy \(S=\left\{3\right\}\)
a: =>5-x+6=12-8x
=>-x+11=12-8x
=>7x=1
hay x=1/7
b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
=>12x+10=6x+5
=>6x=-5
hay x=-5/6
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
\(\Leftrightarrow x\left(4x-3\right)-\left(x-2\right)\left(3x+2\right)=x^2-5\)
\(\Leftrightarrow4x^2-3x-3x^2-2x+6x+4=x^2-5\)
\(\Leftrightarrow x^2+x+4=x^2-5\)
=>x+4=-5
hay x=-9(nhận)