Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}\)
\(=\dfrac{3.4.5...100}{2.3.4...99}\)
\(=\dfrac{100}{2}=50\)
a,
\(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\\ =\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{100}{99}\\ =\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot99}\\ =\dfrac{100}{2}=50\)
b,
\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\\ =\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-99}{100}\\ =\dfrac{\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-99\right)}{2\cdot3\cdot4\cdot...\cdot100}\\ =\dfrac{\left(-1\right)\left(-1\right)\left(-1\right)\cdot...\left(-1\right)}{100}\left(\text{có }99\text{ số }-1\right)\\ =\dfrac{\left(-1\right)^{99}}{100}\\ =\dfrac{-1}{100}\)
c,
\(C=\dfrac{4}{30}+\dfrac{4}{70}+\dfrac{4}{126}+...+\dfrac{4}{798}\\ =\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\\ =\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{19\cdot21}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ =\dfrac{1}{3}-\dfrac{1}{21}\\ =\dfrac{7}{21}-\dfrac{1}{21}\\ =\dfrac{6}{21}=\dfrac{2}{7}\)
ta có
\(2.\left(\dfrac{1}{3}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{6}\right)\) \(5.\left(\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{1}{6}+\dfrac{1}{11}\right)\)
_______________________ X ________________________
\(4.\left(\dfrac{1}{3}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{6}\right)\) \(9.\left(\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{1}{6}\dfrac{1}{11}\right)\)
= \(\dfrac{2}{4}X\dfrac{5}{9}\)= \(\dfrac{10}{36}\)= \(\dfrac{5}{18}\)
a, (\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)).10 - x = 0
<=> \(\dfrac{5}{6}.10-x=0\)
<=> \(\dfrac{25}{3}-x=0\)
<=> x = \(\dfrac{25}{3}\) (thỏa mãn)
@Hoàng Mạnh Quân
a) A= \(\dfrac{4}{7}+\dfrac{3}{4}+\dfrac{2}{7}+\dfrac{5}{4}+\dfrac{1}{7}\)
= \(\left(\dfrac{4}{7}+\dfrac{2}{7}+\dfrac{1}{7}\right)+\left(\dfrac{3}{4}+\dfrac{5}{4}\right)\)
= \(\dfrac{4+2+1}{7}+\dfrac{3+5}{4}\)
= \(\dfrac{7}{7}+\dfrac{8}{4}\) = \(1+2\) = \(3\)
b) B= \(\dfrac{-4}{12}+\dfrac{18}{45}+\dfrac{-6}{9}+\dfrac{-21}{35}+\dfrac{6}{30}\)
= \(\dfrac{-1}{3}+\dfrac{2}{5}+\dfrac{-2}{3}+\dfrac{-3}{5}+\dfrac{1}{5}\)
= \(\left(\dfrac{-1}{3}+\dfrac{-2}{3}\right)+\left(\dfrac{2}{5}+\dfrac{-3}{5}+\dfrac{1}{5}\right)\)
= \(\dfrac{\left(-1\right)+\left(-2\right)}{3}+\dfrac{2+\left(-3\right)+1}{5}\)
= \(\dfrac{-3}{3}+\dfrac{0}{5}\) = \(-1+0\) = \(-1\)
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
\(=81.\dfrac{12.\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}{4.\left(1-\dfrac{1}{7}-\dfrac{1}{289}-\dfrac{1}{85}\right)}:\dfrac{5.\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}{6.\left(1+\dfrac{1}{13}+\dfrac{1}{169}+\dfrac{1}{91}\right)}.\dfrac{158}{711}\)
\(=81.\dfrac{12}{4}:\dfrac{5}{6}.\dfrac{2}{9}\)
\(=243:\dfrac{5}{6}.\dfrac{2}{9}\)
\(=\dfrac{1458}{5}.\dfrac{2}{9}\)
\(=\dfrac{324}{5}\)
a) Thực hiện phép nhân ở vế phải rồi áp dụng quy tắc chuyển vế.
b) Thực hiện phép nhân ở về phải rồi quy đồng mẫu hai vế.
ĐS. a) ; b) x = -40.
\(A=\dfrac{2^4.3^3+2^3.3^4}{2^5.3^4-2^6.3^3}=\dfrac{2^3.3^3.\left(2+3\right)}{2^5.3^3.\left(3-2\right)}=\dfrac{2^3.3^3.5}{2^5.3^3.1}\)
\(=\dfrac{5}{2^2}=\dfrac{5}{4}\)