Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+\dfrac{4}{9\cdot13}+...+\dfrac{4}{17\cdot21}< 1\)
\(A=\dfrac{4}{4}\cdot\left(\dfrac{1}{1\cdot5}+\dfrac{1}{5\cdot9}+\dfrac{1}{9\cdot13}+...+\dfrac{1}{17\cdot21}\right)< 1\)
\(A=\dfrac{1}{1}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}< 1\)
\(A=1-\dfrac{1}{21}< 1\) (đúng) (đpcm).
\(B=\dfrac{4}{1.4}+\dfrac{4}{4.7}+\dfrac{4}{7.10}+...+\dfrac{4}{100.103}+\dfrac{4}{103.106}\)
\(B=4\left(\dfrac{1}{1.4}+\dfrac{1}{4.7}+\dfrac{1}{7.10}+...+\dfrac{1}{100.103}+\dfrac{1}{103.106}\right)\)
\(B=\dfrac{4}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}+\dfrac{3}{103.106}\right)\)
\(B=\dfrac{4}{3}\left(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}+\dfrac{1}{103}-\dfrac{1}{106}\right)\)
\(B=\dfrac{4}{3}\left(\dfrac{1}{3}-\dfrac{1}{106}\right)\)
\(B=\dfrac{4}{3}.\dfrac{103}{318}\)
\(B=\dfrac{412}{954}\)
Theo quy luật thì mình nghĩ đáng lẽ \(\dfrac{4}{5.9}\)phải là\(\dfrac{4}{7.9}\)Bạn có chép sai đề ko?
A=1-\(\dfrac{4}{5.7}-\dfrac{4}{7.9}-\dfrac{4}{9.11}...-\dfrac{4}{59.61}\)
A=\(1-\left(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\right)\)
Đặt B=\(\dfrac{4}{5.7}+\dfrac{4}{7.9}+\dfrac{4}{9.11}+...+\dfrac{4}{59.61}\)
\(x+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{41.45}=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{44}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\left(\dfrac{1}{5}-\dfrac{1}{45}\right)=-\dfrac{37}{45}\\ x+\dfrac{8}{45}=-\dfrac{37}{45}\\ x=-\dfrac{37}{45}-\dfrac{8}{45}\\ x=-1\)
Tìm x
\(\dfrac{x}{5}\)=\(\dfrac{x+6}{15}\)
\(\Rightarrow\)\(\dfrac{3x}{15}\)=\(\dfrac{x+6}{15}\)
\(\Rightarrow\)3x = x+6
\(\Rightarrow\)2x=6
\(\Rightarrow\)x=3
TÍNH TỔNG S
S=\(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)
S=\(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{17}-\dfrac{1}{21}\)
S= \(1-\dfrac{1}{21}\)
S= \(\dfrac{20}{21}\)
Tìm x:
\(\dfrac{x}{5}=\dfrac{x+6}{15}=>\dfrac{3x}{15}=\dfrac{x+6}{15}\)
=> 3x = 6 + x
=> 2x = 6
=> x = 3
Tính tổng S:
\(S=\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{17.21}\)
\(S=\dfrac{4}{1}-\dfrac{4}{5}+\dfrac{4}{5}-\dfrac{4}{9}+\dfrac{4}{9}-\dfrac{4}{13}+...+\dfrac{4}{17}-\dfrac{4}{21}\)
\(S=4-\dfrac{4}{21}\)
\(S=\dfrac{80}{21}\)
1. \(\dfrac{9.5^{20}.27^9-3.9^{15}:25^9}{7.3^{29}.125^6-3.3^9.15^{19}}\)
\(=\dfrac{3^2.5^{20}.3^{27}-3.3^{30}.5^{18}}{7.3^{29}.5^{18}-3^{10}.3^{19}.5^{19}}\)
\(=\dfrac{3^{29}.5^{20}-3^{31}.5^{18}}{7.3^{29}.5^{18}-3^{29}.5^{19}}\)
\(=\dfrac{3^{28}.5^{18}.\left(5^2-3^2\right)}{3^{29}.5^{18}.\left(7-5\right)}\)
\(=\dfrac{5^2-3^2}{7-5}=\dfrac{16}{2}=8\)
2.\(\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{-4}\right)^{20}=\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}\)
\(=\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{2}^2\right)^{20}=\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{2}\right)^{40}\)
\(=\left(\dfrac{1}{2}\right)^{55}\)
3.\(\dfrac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\dfrac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}\)
\(=\dfrac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\dfrac{2^{10}.3^8\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}\)
\(=\dfrac{1-3}{1+5}=\dfrac{-2}{6}=\dfrac{-1}{3}\)
Chúc học tốt!!
1/
a) ta có \(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{97.100}=\dfrac{1}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{97.100}\right)\)
\(=\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=\dfrac{1}{3}.\dfrac{99}{100}=\dfrac{33}{100}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33x}{2009}\)
⇒ \(\dfrac{33}{100}=\dfrac{0,33}{2009}.x\Rightarrow x=\dfrac{33}{100}:\dfrac{0,33}{2009}=2009\)
b,1 + 1/3 + 1/6 + 1/10 + ... + 2/x(x+1)=1 1991/1993
2 + 2/6 + 2/12 + 2/20 + ... + 2/x(x+1) = 3984/1993
2.(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/x(x+1) = 3984/1993
2.(1 − 1/2 + 1/2 − 1/3 + ... + 1/x − 1/x+1)=3984/1993
2.(1 − 1/x+1) = 3984/1993
1 − 1/x + 1= 3984/1993 :2
1 − 1/x+1 = 1992/1993
1/x+1 = 1 − 1992/1993
1/x+1=1/1993
<=>x+1 = 1993
<=>x+1=1993
<=> x+1=1993
<=> x = 1993-1
<=> x = 1992
\(\left(\dfrac{2}{3}\right)^3.\left(\dfrac{-3}{4}\right)^2.\left(-1\right)^{2013}=\dfrac{8}{27}.\dfrac{9}{16}.\left(-1\right)=-\dfrac{1}{6}\)
\(\left(\dfrac{1}{5}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}=\dfrac{1}{5^{12}}.\dfrac{1}{4^{20}}=5^{-12}.4^{-20}=125^{-4}.1024^{-4}=\left(125.1024\right)^{-4}=128000^{-4}\)
\(\dfrac{16^3.3^{10}+120.6^9}{4^6.3^{12}+6^{11}}=\dfrac{2^{12}.3^{10}+2^3.3.5.2^9.3^9}{2^{12}.3^{12}+2^{11}.3^{11}}=\dfrac{2^{12}.3^{10}+2^{12}.2^{10}.5}{2^{12}.3^{12}+2^{11}.3^{11}}=\dfrac{2^{12}.3^{10}\left(1+5\right)}{2^{11}.3^{11}\left(2.3+1\right)}=\dfrac{2.6}{3.7}=\dfrac{4}{7}\)
a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)
\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)
$\dfrac{4}{1.4}+\dfrac{5.9}+....+\dfrac{4}{2001.2005}$
$=1+\dfrac15-\dfrac19+....+\dfrac{1}{2001}-\dfrac{1}{2005}$
$=1-\dfrac{1}{2005}=\dfrac{2004}{2005}$
\(\dfrac{4}{1.4}+\dfrac{4}{5.9}+...+\dfrac{4}{2001.2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{2001}-\dfrac{1}{2005}\)
\(=1+\dfrac{1}{5}-\dfrac{1}{2005}\)
\(=1+\dfrac{401}{2005}-\dfrac{1}{2005}\)
\(=1+\dfrac{400}{2005}=1+\dfrac{80}{401}=\dfrac{481}{401}\)