Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :\(\frac{3^2.3^8}{27^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{3^9}=3^x\)
\(\Rightarrow3^1=3^x\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
\(\frac{3^2.3^8}{27^3}=3^x\)
\(\Leftrightarrow\frac{3^{2+8}}{\left(3^3\right)^3}=3^x\)
\(\Leftrightarrow\frac{3^{10}}{3^9}=3^x\)
\(\Leftrightarrow3=3^x\)
\(\Leftrightarrow x=1\)
\(\frac{3^2.3^8}{37^3}=3^x\)
\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\Rightarrow\frac{3^{10}}{3^9}=3^x\Rightarrow3^1=3^x\Rightarrow x=1\)
a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)
\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)
\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)
\(\Rightarrow x+3=-3\)
\(\Rightarrow x=-6\)
b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)
\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)
\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)
\(\Rightarrow2x+2=-2\)
\(\Rightarrow2x=-4\)
\(\Rightarrow x=-2\)
c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)
\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)
\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)
\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)
\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)
\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)
\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)
\(\Rightarrow2x=18\)
\(\Rightarrow x=9\)
Ta có :
\(A=\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)
\(A=\frac{3^7\left(3^2-2^3\right)+2^{10}\left(3^2-2^3\right)}{3^7\left(3^3-2^2\right)+2^{10}\left(3^3-2^2\right)}\)
\(A=\frac{\left(3^2-2^3\right)\left(3^7+2^{10}\right)}{\left(3^3-2^2\right)\left(3^7+2^{10}\right)}\)
\(A=\frac{3^2-2^3}{3^3-2^2}\)
\(A=\frac{9-8}{27-4}\)
\(A=\frac{1}{23}\)
Vậy \(A=\frac{1}{23}\)
Chúc bạn học tốt ~
\(\frac{3^2.3^8}{\left(3^3\right)^3}=3^x<=>\frac{3^{10}}{3^9}=3^x<=>3^{10-9}=3^x<=>3^x=3<=>x=1\)
a, Theo đề ta có:
\(2.3^x-405=3^{x-1}\)
=> \(2.3^x-405=3^x:3\)
=> \(405=(2.3^x)-(3^x:3)\)
=>\(405=(2.3^x)-(3^x.\dfrac{1}{3})\)
=> \(405=3^x(2-\dfrac{1}{3})\)
=>\(405=3^x(\dfrac{6}{3}-\dfrac{1}{3})\)
=> \(405=3^x.\dfrac{5}{3}\)
=> \(3^x=405:\dfrac{5}{3}\)
=>\(3^x=405.\dfrac{3}{5}\)
=> \(3^x=81.3\)
=> \(3^x=243\)
=> \(3^x=3^5\)
=> x=5
Vậy:..............................
a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)
\(\Rightarrowđpcm\)
d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)
\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)
\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)
\(\Rightarrowđpcm\)
\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)
\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)
\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)
\(\Rightarrowđpcm\)
\(\dfrac{3^2.3^8}{27^3}\)
\(=\dfrac{3^2.3^8}{\left(3^3\right)^3}\)
\(=\dfrac{3^2.3^8}{3^9}\)
\(=\dfrac{3^{10}}{3^9}\)
\(=3^1=3\)
\(3=3x\)
\(x=3:3\)
\(x=1\)