K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2017

\(\dfrac{3^2.3^8}{27^3}\)

\(=\dfrac{3^2.3^8}{\left(3^3\right)^3}\)

\(=\dfrac{3^2.3^8}{3^9}\)

\(=\dfrac{3^{10}}{3^9}\)

\(=3^1=3\)

\(3=3x\)

\(x=3:3\)

\(x=1\)

1 tháng 10 2017

ai giúp với mình sắp đi học rồi

17 tháng 11 2019

Ta có :\(\frac{3^2.3^8}{27^3}=3^x\)

\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\)

\(\Rightarrow\frac{3^{10}}{3^9}=3^x\)

\(\Rightarrow3^1=3^x\)

\(\Rightarrow x=1\)

Vậy \(x=1\)

17 tháng 11 2019

\(\frac{3^2.3^8}{27^3}\)=\(\frac{3^{10}}{27^3}\)=\(\frac{3^{10}}{\left(3^3\right)^3}\)=\(\frac{3^{10}}{3^9}\)=3

Mà \(\frac{3^2.3^8}{27^3}\)=3x

\(\Rightarrow\)3=3x

\(\Rightarrow\)x=1

Vậy x=1.

12 tháng 8 2018

\(\frac{3^2.3^8}{27^3}=3^x\)

\(\Leftrightarrow\frac{3^{2+8}}{\left(3^3\right)^3}=3^x\)

\(\Leftrightarrow\frac{3^{10}}{3^9}=3^x\)

\(\Leftrightarrow3=3^x\)

\(\Leftrightarrow x=1\)

12 tháng 8 2018

           \(\frac{3^2.3^8}{27^3}=3^x\)

<=>    \(\frac{3^{10}}{3^9}=3^x\)

<=>     \(3=3^x\)

<=>      x=1

1 tháng 10 2016

\(\frac{3^2.3^8}{37^3}=3^x\)

\(\Rightarrow\frac{3^{10}}{\left(3^3\right)^3}=3^x\Rightarrow\frac{3^{10}}{3^9}=3^x\Rightarrow3^1=3^x\Rightarrow x=1\)

29 tháng 11 2016

a)\(\left(-3\right)^{x+3}=-\frac{1}{27}\)

\(\left(-3\right)^{x+3}=\left(-\frac{1}{3}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-\frac{3^0}{3^1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3^{-1}\right)^3\)

\(\left(-3\right)^{x+3}=\left(-3\right)^{-3}\)

\(\Rightarrow x+3=-3\)

\(\Rightarrow x=-6\)

b)\(\left(-6\right)^{2x+2}=\frac{1}{36}\)

\(\left(-6\right)^{2x+2}=\left(-\frac{1}{6}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-\frac{6^0}{6^1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6^{-1}\right)^2\)

\(\left(-6\right)^{2x+2}=\left(-6\right)^{-2}\)

\(\Rightarrow2x+2=-2\)

\(\Rightarrow2x=-4\)

\(\Rightarrow x=-2\)

c)\(\left(-3\right)^{x+5}=\frac{1}{81}\)

\(\left(-3\right)^{x+5}=\left(-\frac{1}{3}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-\frac{3^0}{3^1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3^{-1}\right)^4\)

\(\left(-3\right)^{x+5}=\left(-3\right)^{-4}\)

\(\Rightarrow x+5=-4\)

\(\Rightarrow x=-9\)

29 tháng 11 2016

d)\(\left(\frac{1}{9}\right)^x=\left(\frac{1}{27}\right)^6\)

\(\left[\left(\frac{1}{3}\right)^2\right]^x=\left[\left(\frac{1}{3}\right)^3\right]^6\)

\(\left(\frac{1}{3}\right)^{2x}=\left(\frac{1}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

e)\(\left(\frac{4}{9}\right)^x=\left(\frac{8}{27}\right)^6\)

\(\left[\left(\frac{2}{3}\right)^2\right]^x=\left[\left(\frac{2}{3}\right)^3\right]^6\)

\(\left(\frac{2}{3}\right)^{2x}=\left(\frac{2}{3}\right)^{18}\)

\(\Rightarrow2x=18\)

\(\Rightarrow x=9\)

16 tháng 4 2018

Ta có : 

\(A=\frac{3^9-2^3.3^7+2^{10}.3^2-2^{13}}{3^{10}-2^2.3^7+2^{10}.3^3-2^{12}}\)

\(A=\frac{3^7\left(3^2-2^3\right)+2^{10}\left(3^2-2^3\right)}{3^7\left(3^3-2^2\right)+2^{10}\left(3^3-2^2\right)}\)

\(A=\frac{\left(3^2-2^3\right)\left(3^7+2^{10}\right)}{\left(3^3-2^2\right)\left(3^7+2^{10}\right)}\)

\(A=\frac{3^2-2^3}{3^3-2^2}\)

\(A=\frac{9-8}{27-4}\)

\(A=\frac{1}{23}\)

Vậy \(A=\frac{1}{23}\)

Chúc bạn học tốt ~ 

24 tháng 10 2015

\(\frac{3^2.3^8}{\left(3^3\right)^3}=3^x<=>\frac{3^{10}}{3^9}=3^x<=>3^{10-9}=3^x<=>3^x=3<=>x=1\)

24 tháng 10 2015

\(\Rightarrow\frac{3^2.3^8}{3.3^8}=3^x\Rightarrow3=3^x\Rightarrow x=1\)

2 tháng 1 2018

a, Theo đề ta có:

\(2.3^x-405=3^{x-1}\)

=> \(2.3^x-405=3^x:3\)

=> \(405=(2.3^x)-(3^x:3)\)

=>\(405=(2.3^x)-(3^x.\dfrac{1}{3})\)

=> \(405=3^x(2-\dfrac{1}{3})\)

=>\(405=3^x(\dfrac{6}{3}-\dfrac{1}{3})\)

=> \(405=3^x.\dfrac{5}{3}\)

=> \(3^x=405:\dfrac{5}{3}\)

=>\(3^x=405.\dfrac{3}{5}\)

=> \(3^x=81.3\)

=> \(3^x=243\)

=> \(3^x=3^5\)

=> x=5

Vậy:..............................

26 tháng 7 2017

a, \(\dfrac{1}{2!}+\dfrac{2}{3!}+...+\dfrac{99}{100!}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=1-\dfrac{1}{100}< 1\)

\(\Rightarrowđpcm\)

d, \(D=\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D=1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\)

\(\Rightarrow3D-D=\left(1+\dfrac{1}{3}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)

\(\Rightarrow2D=1-\dfrac{1}{3^{99}}\)

\(\Rightarrow D=\dfrac{1}{2}-\dfrac{1}{3^{99}.2}< \dfrac{1}{2}\)

\(\Rightarrowđpcm\)

26 tháng 7 2017

\(\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{49.50}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{49}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{50}\right)\)

\(=1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{49}+\dfrac{1}{50}-1-\dfrac{1}{2}-...-\dfrac{1}{25}\)

\(=\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{50}\)

\(\Rightarrowđpcm\)