Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{2017}}+\dfrac{1}{2^{2018}}\)
\(3A=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{2016}}+\dfrac{1}{3^{2017}}\)
\(3A-A=1-\dfrac{1}{3^{2018}}\)
\(A=\dfrac{\left(1-\dfrac{1}{3^{2018}}\right)}{2}\)
\(b,B=1+5+5^2+5^3+...+5^{100}\)
\(5B=5+5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=1-5^{101}\)
\(B=\dfrac{\left(1-5^{101}\right)}{4}\)
Đáp án nè:
Đặt A=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{99}}\)
3A=\(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)
3A+A=\(\left(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)
4A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)
4A bé hơn(sorry tớ không thấy dấu bé hơn)\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
Đặt B=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)
3B=\(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
4B=\(3-\dfrac{1}{3^{99}}\) bé hơn 3 \(\Rightarrow\)B bé hơn \(\dfrac{3}{4}\)
\(\Rightarrow\) 4A bé hơn\(\dfrac{3}{4}\Rightarrow\)A bé hơn \(\dfrac{3}{16}\)
Tick cho mình nha , ngồi đánh máy tính mỏi cả mắt lun
Chúc học tốt
\(\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)...\left(1-\dfrac{1}{99}\right)=\dfrac{1}{2}\cdot\dfrac{2}{3}...\dfrac{98}{99}=\dfrac{1}{99}\)
Chọn A
1: =>7/3x=3+1/3-8-2/3=-5-1/3=-16/3
=>x=-16/3:7/3=-7/16
2: =>1/3|x-2|=4/5+3/7=28/35+15/35=43/35
=>|x-2|=129/35
=>x-2=129/35 hoặc x-2=-129/35
=>x=199/35 hoặc x=-59/35
a) Ta có
S = \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+...+\dfrac{2}{n.\left(n+1\right).\left(n+2\right)}\)
2S = \(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)2S = \(\dfrac{1}{1.2}-\dfrac{1}{\left(n+1\right).\left(n+2\right)}\)
S = \(\dfrac{1}{4}-\dfrac{1}{\left(n+1\right).\left(n+2\right):2}\)
b) A = \(1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{99}\)
A = \(2-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
A = \(2-\dfrac{1}{99}\)
A = \(\dfrac{197}{99}\)
c) Ta có
B = \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{100}\)
B = \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
B = \(1-\dfrac{1}{100}\)
B = \(\dfrac{99}{100}\)
d) Ta có
C = \(\dfrac{99}{1}+\dfrac{98}{2}+\dfrac{97}{3}+...+\dfrac{1}{99}\)
C = \(1+\left(1+\dfrac{98}{2}\right)+\left(1+\dfrac{97}{3}\right)+...+\left(1+\dfrac{1}{99}\right)\)
C = \(1+50+\dfrac{100}{3}+...+\dfrac{100}{99}\)
C = 51 + 100(\(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\))
Đặt D = \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{99}\)
D = \(\dfrac{1}{2}-\dfrac{1}{99}\)
D = \(\dfrac{97}{198}\)
=> C = 51 + 100.\(\dfrac{97}{198}\)
C = 51 + \(\dfrac{4850}{99}\)
C = \(\dfrac{9899}{99}\)
Đây là bài làm của mình sai thì nx nha
Ta có: \(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3}{6}+\dfrac{-2}{6}+\dfrac{-1}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right)\left(\dfrac{3+\left(-2\right)+\left(-1\right)}{6}\right)\)
\(B=\left(3\dfrac{10}{99}+4\dfrac{11}{99}-5\dfrac{8}{299}\right).0=0\)
Tick mk vs !
B = (3\(\dfrac{10}{99}\)+4\(\dfrac{11}{99}\)-5\(\dfrac{8}{299}\)).0
B = 0
\(\dfrac{3}{1.3}+\dfrac{3}{1.5}+...+\dfrac{3}{97.99}\)
\(=\dfrac{3}{2}.\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{3.7}+...+\dfrac{1}{97.99}\right)\)
\(=\dfrac{3}{2}.\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}.\left(1-\dfrac{1}{99}\right)\)
\(=\dfrac{3}{2}.\dfrac{98}{99}\)
\(=\dfrac{1}{1}.\dfrac{49}{33}\)
\(=\dfrac{49}{33}\)
= 1 - 1/3 + 1/ 3 - 1/5 + 1/ 5 - ... + 1/97 -1/99
=1-1/99
=98/99