K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x<>0

2x-y=3

=>\(y=2x-3\)

\(\dfrac{2}{x}=\dfrac{y}{5}\)

=>\(\dfrac{2}{x}=\dfrac{2x-3}{5}\)

=>x(2x-3)=10

=>\(2x^2-3x-10=0\)

=>\(\left[{}\begin{matrix}x=\dfrac{3+\sqrt{89}}{4}\left(nhận\right)\\x=\dfrac{3-\sqrt{89}}{4}\left(nhận\right)\end{matrix}\right.\)

Khi \(x=\dfrac{3+\sqrt{89}}{4}\) thì \(y=2\cdot\dfrac{3+\sqrt{89}}{4}-3=\dfrac{-3+\sqrt{89}}{2}\)

Khi \(x=\dfrac{3-\sqrt{89}}{4}\) thì \(y=2\cdot\dfrac{3-\sqrt{89}}{4}-3=\dfrac{-3-\sqrt{89}}{2}\)

4 tháng 11 2018

Dựa theo tính chất của dãy tỉ số bằng nhau, ta có: 

\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{2x+3y+4z}{3+4+5}=\frac{2x+3y+4z}{12}\)

Rút gọn đi, ta có:

\(\frac{2x+3y+4z}{12}=\frac{x+3y+4z}{6}=\frac{x+y+4z}{2}=\frac{x+y+z}{\left(\frac{2}{4}\right)}=\frac{48}{\left(\frac{2}{4}\right)}=96\) (1)

Từ (1), ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=96\Rightarrow\hept{\begin{cases}2x=96.3\\3y=96.4\\4z=96.5\end{cases}}\Rightarrow\hept{\begin{cases}x=144\\y=128\\z=120\end{cases}}\)

Kết luận: .....

4 tháng 11 2018

Đặt \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=k\)

\(\Rightarrow x=\frac{3}{2}k;y=\frac{4}{3}k;z=\frac{5}{4}k\)

Có: \(x+y+z=49\)

\(\Rightarrow\frac{3}{2}k+\frac{4}{3}k+\frac{5}{4}k=49\)

\(k.\left(\frac{3}{2}+\frac{4}{3}+\frac{5}{4}\right)=49\)

\(k.\frac{49}{12}=49\)

\(\Rightarrow k=12\)

\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}.12=18\\y=\frac{4}{3}.12=16\\z=\frac{5}{4}.12=15\end{cases}}\)

Vậy \(\hept{\begin{cases}x=18\\y=16\\z=15\end{cases}}\)

Tham khảo nhé~

12 tháng 9 2021

B1 :

\(\frac{x}{3}=\frac{y}{6}=\frac{xy}{3\times6}=\frac{162}{18}=9\)

---> x = 3.9 = 27

---> y = 6.9 = 54

B2 :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{xyz}{2\times3\times5}=\frac{-240}{30}=-8\)

---> x = -8.2 = -16

---> y = -8.3 = -24

---> z = -8.5 = -40

xin tiick

13 tháng 8 2017

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) 

Ta có  :

\(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}\)(1)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}\)(2) 

Từ (1) và (2) ; Suy ra : \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ; ta được : 

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{100}{-4}=-25\)

\(\Leftrightarrow\hept{\begin{cases}\frac{x}{20}=-25\\\frac{y}{15}=-25\\\frac{z}{9}=-25\end{cases}\Rightarrow\hept{\begin{cases}x=-500\\y=-375\\z=-225\end{cases}}}\)

Vậy .................

15 tháng 8 2019

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\)   và \(x^2-y^2=-16\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12};\frac{y}{12}=\frac{1}{15}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

+ Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z}{15}=\frac{x^2-y^2}{64-144}=-\frac{16}{-80}=\frac{1}{5}\)

Suy ra \(\frac{x^2}{64}=\frac{1}{5}\Rightarrow x=\frac{32}{5}\)

         \(\frac{y^2}{144}=\frac{1}{5}\Rightarrow y=\frac{72}{5}\)

         \(\frac{z}{15}=\frac{1}{5}\Rightarrow z=3\)

Vậy \(x=\frac{32}{5};y=\frac{72}{5};z=3\)

Chúc bạn học tốt !!!

Ta có: \(\dfrac{2}{x}=\dfrac{y}{9}\)

nên xy=18

Đạt \(\dfrac{x}{4}=\dfrac{y}{8}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k\\y=8k\end{matrix}\right.\)

Ta có: xy=18

\(\Leftrightarrow32k^2=18\)

\(\Leftrightarrow k^2=\dfrac{9}{16}\)

Trường hợp 1: \(k=\dfrac{3}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=3\\y=8k=6\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{3}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4k=-3\\y=8k=-6\end{matrix}\right.\)

Tiếc quá. Mik làm đc. Nhg mik chx = điện thọi nên k vt đc p/ số

4 tháng 11 2018

ko sao

24 tháng 10 2017

a/ \(\dfrac{x}{5}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{25}=\dfrac{1}{4}\\\dfrac{y^2}{9}=\dfrac{1}{4}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6,25\\x=-6,25\end{matrix}\right.\\\left[{}\begin{matrix}y=2,25\\y=-2,25\end{matrix}\right.\end{matrix}\right.\)

Vậy .....

b/ \(\dfrac{x}{3}=\dfrac{y}{5}\)

\(\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{25}\)

\(\Leftrightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{25}\)

Áp dụng t,c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x^2}{18}=\dfrac{y^2}{25}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x^2}{18}=4\\\dfrac{y^2}{25}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=6\\x=-6\end{matrix}\right.\\\left[{}\begin{matrix}y=10\\y=-10\end{matrix}\right.\end{matrix}\right.\)

Vậy ..

24 tháng 10 2017

a, Ta có: \(\dfrac{x}{5}=\dfrac{y}{3}\Leftrightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}\)\(x^2-y^2=4\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=0,25\)

+) \(\dfrac{x^2}{25}=0,25\Rightarrow x^2=6,25\Rightarrow x=\pm2,5\)

+) \(\dfrac{y^2}{9}=0,25\Rightarrow y^2=2,25\Rightarrow y=\pm1,5\)

Vậy ...

b, Ta có: \(\dfrac{x}{3}=\dfrac{y}{5}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{25}\Leftrightarrow\dfrac{2x^2}{18}=\dfrac{y^2}{25}\)\(2x^2-y^2=-28\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x^2}{18}=\dfrac{y^2}{25}=\dfrac{2x^2-y^2}{18-25}=\dfrac{-28}{-7}=4\)

+) \(\dfrac{2x^2}{18}=4\Rightarrow2x^2=72\Rightarrow x^2=36\Rightarrow x=\pm6\)

+) \(\dfrac{y^2}{25}=4\Rightarrow y^2=100\Rightarrow y=\pm10\)

Vậy ...

sai đề kìa

x/5=y/4

áp dụng tính chất dãy tỉ số bằng nha ta có:

x/5=y/4=x+y/5+4=27/9=3

=>x/5=3 =>x=15

=>y/4=3 =>y=12