Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính:
\(B=\dfrac{3}{13.19}+\dfrac{3}{19.25}+...+\dfrac{3}{613.619}\)
\(B=\dfrac{1}{2}.\left(\dfrac{6}{13.19}+\dfrac{6}{19.25}+...+\dfrac{6}{613.619}\right)\)
\(B=\dfrac{1}{2}.\left(\dfrac{6}{13}-\dfrac{6}{19}+\dfrac{6}{19}-\dfrac{6}{25}+...+\dfrac{6}{613}-\dfrac{6}{619}\right)\)
\(B=\dfrac{1}{2}.\left(\dfrac{6}{13}-\dfrac{6}{619}\right)\)
\(B=\dfrac{1}{2}.\dfrac{3636}{8047}=\dfrac{1818}{8047}\)
\(A=\frac{1}{3}.\left(\frac{1}{14}-\frac{1}{17}+\frac{1}{17}-\frac{1}{20}+......+\frac{1}{161}-\frac{1}{164}\right)\)
\(B=\frac{1}{3}.\left(\frac{1}{13}-\frac{1}{19}+.....+\frac{1}{613}-\frac{1}{619}\right)\)
1.
Ta có:
Vì b+1-b=1=>\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{1}{b.\left(b+1\right)}\)<\(\dfrac{1}{b.b}\)(1)
Vì b-(b-1)=1=>\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{1}{b.\left(b-1\right)}\)>\(\dfrac{1}{b.b}\)(2)
Từ (1) và (2)=>\(\dfrac{1}{b}-\dfrac{1}{b+1}< \dfrac{1}{b.b}< \dfrac{1}{b-1}-\dfrac{1}{b}\)
Câu 2 bạn hỏi bạn Bùi Ngọc Minh nhé PR cho nó
Bài 2:
Ta có:S=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{9^2}=\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{9.9}\)
S>\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{9.10}=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}=\dfrac{1}{2}-\dfrac{1}{10}=\dfrac{2}{5}\left(1\right)\)
S<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}=1-\dfrac{1}{9}=\dfrac{8}{9}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{2}{5}< S< \dfrac{8}{9}\)
a)Ta có:\(\dfrac{1}{b}-\dfrac{1}{b+1}=\dfrac{b+1-b}{b\left(b+1\right)}=\dfrac{1}{b^2+b}< \dfrac{1}{b^2}\)(do b>1)
\(\dfrac{1}{b-1}-\dfrac{1}{b}=\dfrac{b-b+1}{\left(b-1\right)b}=\dfrac{1}{b^2-b}>\dfrac{1}{b^2}\)(do b>1)
b)Áp dụng từ câu a
=>\(\dfrac{1}{2}-\dfrac{1}{3}< \dfrac{1}{2^2}< \dfrac{1}{1}-\dfrac{1}{2}\)
\(\dfrac{1}{3}-\dfrac{1}{4}< \dfrac{1}{3^2}< \dfrac{1}{2}-\dfrac{1}{3}\)
.........................
\(\dfrac{1}{9}-\dfrac{1}{10}< \dfrac{1}{9^2}< \dfrac{1}{8}-\dfrac{1}{9}\)
=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}< S< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
=>\(\dfrac{1}{2}-\dfrac{1}{10}< S< 1-\dfrac{1}{9}\)
=>\(\dfrac{2}{5}< S< \dfrac{8}{9}\)(đpcm)
B= 112+122+133+....+1992<11.2+12.3+...+199.100112+122+133+....+1992<11.2+12.3+...+199.100
Ta có: 11.2+12.3+13.4+...+199.10011.2+12.3+13.4+...+199.100
= 1−12+12−13+13−.....−199+199−11001−12+12−13+13−.....−199+199−1100
= 1−1100=99100<1<1341−1100=99100<1<134
Vậy B < 134134.
B = \(\dfrac{1}{1^{2^{ }}}+\dfrac{1}{2^2}+\dfrac{1}{3^3}+....+\dfrac{1}{99^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
Ta có: \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\)
= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-.....-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
= \(1-\dfrac{1}{100}=\dfrac{99}{100}< 1< 1\dfrac{3}{4}\)
Vậy B < \(1\dfrac{3}{4}\).
Bài này giải ra dài lắm;
Gợi ý : với câu a) cm 1<A<2
với câ u b) 0<B<1
với câu c) áp dụng bài toán của ông gao í; cách tỉnh tổng từ 1->100 trong sách GK 6 có nhé
Mong bạn giải ra
đặt biểu thức trên =A
ta có: A=2/13.19+2/19.25+2/25.31+...+2/613.619
=(2/13-2/19)+(2/19-2/25)+(2/25-2/31)+...+(2/613-2/619)
=2/13-2/19+2/19-2/25+2/25-2/31+...+2/613-2/619
=2/13+(2/19-2/19)+(2/25-2/25)+(2/31-2/31)+...+(2/613-2/613)-2/619
=2/13-2/619=1212/8047
Theo như tôi thấy thì phân số sau khi đổi ra đâu bằng phân số ban đầu đâu bạn? ví dụ như: 2/13.19 = ( 2/13 - 2/19) tôi thấy đâu có bằng nhau đâu nhỉ? nếu quy đồng lại ( 2/13 - 2/19) thì nó phải = 12/ 13.19 chứ? đâu phải là 2/13.19 đâu. Bạn có thể giải thích lại cho mình 1 chút được không? chân thành cám ơn bạn