Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ĐKXĐ: x\(\ge0\);x\(\ne1\)
Rút gọn P với \(x\ge0;x\ne1\)ta có
P=\(\dfrac{-\sqrt{x}+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\)
\(=\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-\sqrt{x}+0,5}{\sqrt{x}-1}+\dfrac{\sqrt{x}\left(\sqrt{x}-0,5\right)}{x-\sqrt{x}+1}\right)\)
=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\left(\dfrac{-x\sqrt{x}+x-\sqrt{x}+0,5x-0,5\sqrt{x}+0,5+x\sqrt{x}-x-0,5x+0,5\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\right)\)
=\(\dfrac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\div\dfrac{-1}{\left(\sqrt{x}-1\right)\left(x-\sqrt{x}+1\right)}\)
=\(\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\)
2, Thay x=7-4\(\sqrt{3}\)thỏa mãn đk vào P ta có:
P\(=\dfrac{7-4\sqrt{3}-\sqrt{7-4\sqrt{3}}+1}{\sqrt{7-4\sqrt{3}}}\)
=\(\dfrac{7-4\sqrt{3}-\sqrt{\left(\sqrt{3}-2\right)^2}+1}{\sqrt{\left(\sqrt{3}-2\right)^2}}\)
=\(\dfrac{7-4\sqrt{3}-2+\sqrt{3}+1}{2-\sqrt{3}}\)
\(=\dfrac{6-3\sqrt{3}}{2-\sqrt{3}}=12+6\sqrt{3}-6\sqrt{3}-9\)=3
\(a.P=\dfrac{1}{\sqrt{x}+2}-\dfrac{5}{x-\sqrt{x}-6}-\dfrac{\sqrt{x}-2}{3-\sqrt{x}}=\dfrac{\sqrt{x}-3-5+\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-8+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\) ( x ≥ 0 ; x # 9 )
\(b.\) \(P=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=\dfrac{2\left(\sqrt{x}+2\right)-\sqrt{x}}{\sqrt{x}+2}=2-\dfrac{\sqrt{x}}{\sqrt{x}+2}\text{≤}2\)
⇒ \(P_{Max}=2."="\) ⇔ \(x=0\)
điều kiện xác định : \(x\ge0;x\ne1\)
a) ta có : \(P=\left(\dfrac{\sqrt{x}-2}{x-1}-\dfrac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\dfrac{1-x}{\sqrt{2}}\right)^2\)
\(\Leftrightarrow P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\) \(\Leftrightarrow P=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\) \(\Leftrightarrow P=\left(\dfrac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}\)\(\Leftrightarrow P=-\sqrt{x}\left(\sqrt{x}-1\right)\)
b) \(x>0\Rightarrow-\sqrt{x}< 0\) và \(x< 1\Rightarrow\sqrt{x}-1< 0\)
\(\Rightarrow-\sqrt{x}\left(\sqrt{x}-1\right)>0\) (đpcm)
c) ta có : \(P=-\sqrt{x}\left(\sqrt{x}-1\right)=-x+\sqrt{x}=-x+\sqrt{x}-\dfrac{1}{4}+\dfrac{1}{4}\)
\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(\Rightarrow P_{max}=\dfrac{1}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\)
vậy GTLN của \(P\) là \(\dfrac{1}{4}\) khi \(x=\dfrac{1}{4}\)
a) ĐK:\(x\ge0,x\ne4\)
\(P=\dfrac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}+2\right)-2-5\sqrt{x}}{x-4}\)
\(=\dfrac{x\sqrt{x}+4x}{x-4}\)
b) ĐK: \(x\ge0,x\ne1\)
\(A=\dfrac{\sqrt{x}\left(x-1\right)+3\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)+4-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(x-1\right)}\)
\(=\dfrac{x\sqrt{x}+3x-\sqrt{x}-5}{\left(\sqrt{x}+3\right)\left(x-1\right)}\)
a: \(A=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\dfrac{-3+2\sqrt{x}+2}{x\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\dfrac{2\sqrt{x}-1}{x\sqrt{x}+1}\)
\(=\dfrac{2x^2+2\sqrt{x}-9x\sqrt{x}-9+2x\sqrt{x}-10x+12\sqrt{x}-x+5\sqrt{x}-6}{\left(x\sqrt{x}+1\right)\left(x-5\sqrt{x}+6\right)}\)
\(=\dfrac{2x^2+19\sqrt{x}-7x\sqrt{x}-11x-15}{\left(x\sqrt{x}+1\right)\left(x-5\sqrt{x}+6\right)}\)
b: \(=\dfrac{x-\sqrt{x}+1-3+2\sqrt{x}+2}{x\sqrt{x}+1}\)
\(=\dfrac{x+\sqrt{x}}{x\sqrt{x}+1}=\dfrac{\sqrt{x}}{x-\sqrt{x}+1}\)
a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)
b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)
g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)
Lời giải:
a) ĐK: \(x\geq 0; x\neq 1\)
\(A=\left(\frac{x+2}{(\sqrt{x})^3-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}-1}{2}\)
\(=\left(\frac{x+2}{(\sqrt{x}-1)(x+\sqrt{x}+1)}+\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(x+\sqrt{x}+1)}-\frac{x+\sqrt{x}+1}{(\sqrt{x}-1)(x+\sqrt{x}+1)}\right):\frac{\sqrt{x}-1}{2}\)
\(=\frac{x+1-2\sqrt{x}}{(\sqrt{x}-1)(x+\sqrt{x}+1)}.\frac{2}{\sqrt{x}-1}\)
\(=\frac{2(\sqrt{x}-1)^2}{(\sqrt{x}-1)^2(x+\sqrt{x}+1)}=\frac{2}{x+\sqrt{x}+1}\)
----------------------------
\(B=\frac{2\sqrt{x}}{x+\sqrt{x}+2\sqrt{x}+2}+\frac{5\sqrt{x}+1}{x+\sqrt{x}+3\sqrt{x}+3}+\frac{\sqrt{x}+10}{x+2\sqrt{x}+3\sqrt{x}+6}\)
\(=\frac{2\sqrt{x}}{(\sqrt{x}+1)(\sqrt{x}+2)}+\frac{5\sqrt{x}+1}{(\sqrt{x}+1)(\sqrt{x}+3)}+\frac{\sqrt{x}+10}{(\sqrt{x}+2)(\sqrt{x}+3)}\)
\(=\frac{2\sqrt{x}(\sqrt{x}+3)+(5\sqrt{x}+1)(\sqrt{x}+2)+(\sqrt{x}+10)(\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}+2)(\sqrt{x}+3)}\)
\(=\frac{8x+28\sqrt{x}+12}{(\sqrt{x}+1)(\sqrt{x}+2)(\sqrt{x}+3)}=\frac{4(2\sqrt{x}+1)(\sqrt{x}+3)}{(\sqrt{x}+1)(\sqrt{x}+2)(\sqrt{x}+3)}\)
\(=\frac{4(2\sqrt{x}+1)}{(\sqrt{x}+1)(\sqrt{x}+2)}\)