Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\left|x-4\right|\ge0\forall x\Rightarrow A=7+\left|x-4\right|\ge7\forall x\)
Dấu "=" xảy ra <=> x - 4 = 0
=> x = 4
Vậy Min A = 7 <=> x = 4
b) Ta có : \(\left|2-3x\right|\ge0\forall x\Rightarrow B=\left|2-3x\right|-\frac{1}{5}\ge-\frac{1}{5}\forall x\)
Dấu "=" xảy ra <=> 2 - 3x = 0
=> 3x = 2
=> x = 2/3
Vậy Min B = -1/5 <=> x = 2/3
c) Ta có \(\left|\frac{1}{2}-5x\right|\ge0\forall x\Rightarrow C=7-\left|\frac{1}{2}-5x\right|\le7\forall x\)
Dấu "=" xảy ra <=> 1/2 - 5x = 0
=> x = 1/10
Vậy Max C = 7 <=> x = 1/10
4. A=7-x/x-5=(-(x-5)+2)/x-5=-1+2/x-5
A nhỏ nhất khi 2/x-5 nhỏ nhất.mà 2/x-5 nho nhất khi x-5 lớn nhất(a)
TH1: x-5>0=>x>5=>2/x-5>0(1)
Th2:x-5<0=>x<5=>2/x-5<0(2)
(1), (2)=>x-5<0(b)
(a),(b)=>x-5=-1=>x=4
vậy A nhỏ nhất là -3
Vì / x-2 / luôn lớn hơn hoặc bằng 0, suy ra: / x-2 / + 3 luôn lớn hơn hoặc bằng 3
Để D có giá trị lớn nhất thì / x-2 / +3=3
Vậy giá trị lớn nhất của biểu thức trên là : 1/3
Cái kia là GTTĐ của x -2 à