Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x ta có :
+) \(\left|x+\dfrac{1}{1.3}\right|\ge0; \)
+) \(\left|x+\dfrac{1}{3.5}\right|\ge0;\)
.....................................
+) \(\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{1}{1.3}\right|+\left|x+\dfrac{1}{3.5}\right|+.......+\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Leftrightarrow50x\ge0\)
\(\Leftrightarrow x\ge0\)
Khi \(x\ge0\) ta được :
+) \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3}\)
+) \(\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5}\)
.............................................
+) \(\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\)
\(\Leftrightarrow\left(x+\dfrac{1}{1.3}\right)+\left(x+\dfrac{1}{3.5}\right)+......+\left(x+\dfrac{1}{97.99}\right)=50x\)
\(\Leftrightarrow49x+\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+....+\dfrac{1}{97.99}\right)=50x\)
\(\Leftrightarrow x=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Leftrightarrow x=\dfrac{16}{99}\)
Vậy...
\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{49}{99}\\ \Leftrightarrow2\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}\right)=2\cdot\dfrac{49}{99}\\ \Leftrightarrow\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{98}{99}\\ \Leftrightarrow\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}=\dfrac{98}{99}\\ \Leftrightarrow1-\dfrac{1}{2x+1}=1-\dfrac{1}{99}\\ \Leftrightarrow\dfrac{1}{2x+1}=\dfrac{1}{99}\\ \Rightarrow2x+1=99\\ \Leftrightarrow2x=98\\ \Leftrightarrow x=49\)
6:
\(4D=2^2+2^4+...+2^{202}\)
=>3D=2^202-1
hay \(D=\dfrac{2^{202}-1}{3}\)
7: \(=\dfrac{1}{2}\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{97\cdot99}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{32}{99}=\dfrac{16}{99}\)
b) Vì \(\left|x+\dfrac{1}{1.3}\right| \ge0;\left|x+\dfrac{1}{3.5}\right|\ge0;...;\left|x+\dfrac{1}{97.99}\right|\ge0\)
\(\Rightarrow50x\ge0\Rightarrow x\ge0\)
Khi đó: \(\left|x+\dfrac{1}{1.3}\right|=x+\dfrac{1}{1.3};\left|x+\dfrac{1}{3.5}\right|=x+\dfrac{1}{3.5};...;\left|x+\dfrac{1}{97.99}\right|=x+\dfrac{1}{97.99}\left(1\right)\)
Thay (1) vào đề bài:
\(x+\dfrac{1}{1.3}+x+\dfrac{1}{3.5}+...+x+\dfrac{1}{97.99}=50x\)
\(\Rightarrow\left(x+x+...+x\right)+\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)=50x\)
\(\Rightarrow49x+\left[\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)\right]=50x\)
\(\Rightarrow49x+\dfrac{16}{99}=50x\)
\(\Rightarrow x=\dfrac{16}{99}\)
Vậy \(x=\dfrac{16}{99}.\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
⇔ \(2A=2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)\)
⇔ 2A = \(\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
⇔ 2A = \(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
⇔ 2A = \(\dfrac{1}{3}-\dfrac{1}{99}\)
⇔ 2A = \(\dfrac{32}{99}\)
⇔ A = \(\dfrac{32}{99}:2\)
⇔ A = \(\dfrac{16}{99}\)
\(A=\dfrac{1}{3.5}+\dfrac{1}{5.7}+......+\dfrac{1}{97.99}\)
\(\Leftrightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+......+\dfrac{2}{97.99}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+.....+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Leftrightarrow2A=\dfrac{1}{3}-\dfrac{1}{99}\)
\(\Leftrightarrow2A=\dfrac{32}{99}\)
\(\Leftrightarrow A=\dfrac{16}{99}\)
a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)
\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)
câu b và c xem lại đề nha
Chúc bạn học tốt!!!
a, \(\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{1}{2}.\left(1-\dfrac{1}{2x+1}\right)=\dfrac{49}{99}\)
\(\Leftrightarrow\dfrac{2x+1-1}{2x+1}=\dfrac{98}{99}\)
\(\Leftrightarrow98\left(2x+1\right)=99.2x\)
\(\Leftrightarrow2x=98\Rightarrow x=49\)
b: Đặt \(A=1-3+3^2-3^3+...+\left(-3\right)^x\)
\(=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^x\)
\(\Leftrightarrow-3A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}\)
\(\Leftrightarrow-3A-A=\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{x+1}-...-1\)
\(\Leftrightarrow-4A=\left(-3\right)^{x+1}-1\)
\(\Leftrightarrow A=\dfrac{\left(-3\right)^{x+1}-1}{-4}=\dfrac{-\left(-3\right)^{x+1}+1}{4}\)
\(\Leftrightarrow\dfrac{-\left(-3\right)^{x+1}+1}{4}=\dfrac{3^{2012}-1}{2}\)
\(\Leftrightarrow-\left(-3\right)^{x+1}+1=2\cdot3^{2012}-2\)
\(\Leftrightarrow-\left(-3\right)^{x+1}=2\cdot3^{2012}-3\)
\(\Leftrightarrow-\left(-3\right)^{x+1}=3\left(2\cdot3^{2011}-1\right)\)
\(\Leftrightarrow-\left(-3\right)^x=2\cdot3^{2011}-1\)
=>x=2010
\(A=\dfrac{1}{3.5} +\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\)
\(\Rightarrow2A=2\left(\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{97.99}\right)\)
\(\Rightarrow2A=\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\)
\(\Rightarrow2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\)
\(\Rightarrow2A=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
\(\Rightarrow A=\dfrac{32}{99}:2=\dfrac{16}{99}\)
Đặt :
\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+........+\dfrac{1}{19.21}\)
\(\Leftrightarrow2A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+..........+\dfrac{2}{19.21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+.........+\dfrac{1}{19}-\dfrac{1}{21}\)
\(\Leftrightarrow2A=1-\dfrac{1}{21}\)
\(\Leftrightarrow2A=\dfrac{20}{21}\)
\(\Leftrightarrow A=\dfrac{10}{21}\)
Đặt A =
\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{19\cdot21}\\ \Rightarrow2A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{19\cdot21}\\ =\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ =1-\dfrac{1}{21}=\dfrac{20}{21}\\ \Rightarrow A=\dfrac{20}{21}:2=\dfrac{10}{21}\)
\(S=\dfrac{1}{1.3}-\dfrac{1}{2.4}+\dfrac{1}{3.5}-\dfrac{1}{4.6}+\dfrac{1}{5.7}-\dfrac{1}{6.8}+\dfrac{1}{7.9}-\dfrac{1}{8.10}\)
\(S=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}\right)-\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+\dfrac{1}{8.10}\right)\)
\(S=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{7}-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{10}\right)\)
\(S=\dfrac{1}{2}-\dfrac{1}{18}-\dfrac{1}{4}+\dfrac{1}{20}\)
\(S=.C.A.S.I.O.\)
\(\dfrac{1}{99}-\dfrac{1}{97.99}-\dfrac{1}{95.97}-\dfrac{1}{93.95}-...-\dfrac{1}{3.5}-\dfrac{1}{1.3}\\ =\dfrac{1}{99}-\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{93.95}+\dfrac{1}{95.97}+\dfrac{1}{97.99}\right)\\ \)
\(=\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{93.95}+\dfrac{2}{95.97}+\dfrac{2}{97.99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{93}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{99}\right)\\ \)
\(=\dfrac{1}{99}-\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)\\ =\dfrac{1}{99}-\dfrac{1}{2}+\dfrac{1}{198}=-\dfrac{16}{33}\)
Đăng Tùng em làn đúng rồi đó