K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 11 2018

Ta có các công thức cơ bản sau: \(cos\left(90^0+x\right)=-sinx;sin\left(90^0-x\right)=cosx\)

\(cot\left(90^0-x\right)=tanx;tan\left(90^0+x\right)=-cotx\)

Thay vào bài toán:

\(\dfrac{1-\left(-sinx\right)^2}{1-cos^2x}-tanx.\left(-cotx\right)=\dfrac{1-sin^2x}{1-cos^2x}+tanx.cotx\)

\(=\dfrac{cos^2x}{sin^2x}+1=\dfrac{cos^2x+sin^2x}{sin^2x}=\dfrac{1}{sin^2x}\)

28 tháng 11 2018

Nguyễn Việt Lâm cảm ơn bn nhá

NV
18 tháng 4 2020

\(C=2cosx+cosx-cosx-sinx=2cosx-sinx\)

11 tháng 5 2017

a)\(sin^2\left(180^o-\alpha\right)+tan^2\left(180-\alpha\right).tan^2\left(270^o+\alpha\right)\)\(+sin\left(90^o+\alpha\right)cos\left(\alpha-360^o\right)\)
\(=sin^2\alpha+tan^2\alpha.cot^2\alpha+cos\alpha cos\alpha\)
\(=sin^2\alpha+cos^2\alpha+\left(tan\alpha cot\alpha\right)^2=1+1=2\).

11 tháng 5 2017

\(\dfrac{cos\left(\alpha-180^o\right)}{sin\left(180^o-\alpha\right)}+\dfrac{tan\left(\alpha-180^o\right)cos\left(180^o+\alpha\right)sin\left(270^o+\alpha\right)}{tan\left(270^o+\alpha\right)}\)
\(=\dfrac{cos\left(180^o-\alpha\right)}{sin\left(180^o-\alpha\right)}+\dfrac{-tan\left(180^o-\alpha\right).cos\alpha.sin\left(90^o+\alpha\right)}{-tan\left(90^o+\alpha\right)}\)
\(=tan\left(180^o-\alpha\right)+\dfrac{tan\alpha.cos\alpha.cos\alpha}{cot\alpha}\)
\(=-tan\alpha+tan^2\alpha cos^2\alpha\)
\(=tan\alpha\left(-1+tan\alpha cos^2\alpha\right)\)
\(=tan\alpha\left(sin\alpha cos\alpha-1\right)\).

10 tháng 5 2017

a) \(sin6\alpha cot3\alpha cos6\alpha=2.sin3\alpha.cos3\alpha\dfrac{cos3\alpha}{sin3\alpha}-cos6\alpha\)
\(=2cos^23\alpha-\left(2cos^23\alpha-1\right)=1\) (Không phụ thuộc vào x).

10 tháng 5 2017

b) \(\left[tan\left(90^o-\alpha\right)-cot\left(90^o+\alpha\right)\right]^2\)\(-\left[cot\left(180^o+\alpha\right)+cot\left(270^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+cot\left(90^o-\alpha\right)\right]^2\)\(-\left[cot\alpha+cot\left(90^o+\alpha\right)\right]^2\)
\(=\left[cot\alpha+tan\alpha\right]^2-\left[cot\alpha-tan\alpha\right]^2\)
\(=4tan\alpha cot\alpha=4\). (Không phụ thuộc vào \(\alpha\)).

27 tháng 3 2022

quá đúng

29 tháng 3 2022

1234567890-01234567890-=qưertyuiop[]\';;lkjhfgdsazxcvbnm,./\'l;[]7894561230.+-

16 tháng 4 2022

\(tử:=\dfrac{1}{2}\left[sin\left(60^o-x+30^o-x\right)+sin\left(60^o-x-30^2+x\right)\right]+\dfrac{1}{2}\left[sin\left(30^o-x+60^o-x\right)+sin\left(30^o-x-60^o+x\right)\right]\)

\(=\dfrac{1}{2}\left[2sin\left(\dfrac{\pi}{2}-2x\right)+sin\left(\dfrac{\pi}{6}\right)+sin\left(-\dfrac{\pi}{6}\right)\right]=\dfrac{1}{2}.\left[2sin\left(\dfrac{\pi}{2}-2x\right)+0\right]=sin\left(\dfrac{\pi}{2}-2x\right)=cos2x\)

\(VT=\dfrac{cos2x}{sin4x}=\dfrac{cos2x}{2sin2x.cos2x}=\dfrac{1}{2sin2x}=\dfrac{1}{4sinx.cosx}=\dfrac{\dfrac{1}{cos^2x}}{\dfrac{4sinx.cosx}{cos^2x}}=\dfrac{1+tan^2x}{\dfrac{4sĩnx}{cosx}}=\dfrac{1+tan^2x}{4tanx}=VP\)

17 tháng 4 2022

thanks

NV
19 tháng 4 2021

Bạn kiểm tra lại đề bài câu 1, câu này chỉ có thể rút gọn đến \(2cot^2x+2cotx+1\) nên biểu thức ko hợp lý

Đồng thời kiểm tra luôn đề câu 2, trong cả 2 căn thức đều xuất hiện \(6sin^2x\) rất không hợp lý, chắc chắn phải có 1 cái là \(6cos^2x\)

19 tháng 4 2021

Mình sửa lại đề rồi á

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

Đặt $a-\frac{b}{2}=x; \frac{a}{2}-b=y$ thì $45^0< x< 180^0; -45^0< y< 90^0$

$\cos x=\frac{-1}{4}; 45^0< x< 180^0$ nên $\sin x=\frac{\sqrt{15}}{4}$

$\sin y=\frac{1}{3}; -45^0< y< 90^0$ nên $\cos y=\frac{2\sqrt{2}}{3}$

\(P=72\cos (2x-2y)+49=72[2\cos ^2(x-y)-1]+49=144\cos ^2(x-y)-23\)

\(=144(\cos x\cos y+\sin x\sin y)^2-23=-4\sqrt{30}\)

Đáp án C.

NV
10 tháng 4 2019

1/

\(tanx=\frac{sinx}{cosx}=\frac{sin^2x}{sinx.cosx}=\frac{2sin^2x}{2sinx.cosx}\)

\(=\frac{2\left(\frac{1-cos2x}{2}\right)}{sin2x}=\frac{1-cos2x}{sin2x}\)

2/

\(\frac{sin\left(60-x\right)cos\left(30-x\right)+cos\left(60-x\right)sin\left(30-x\right)}{sin4x}=\frac{sin\left(60-x+30-x\right)}{sin4x}=\frac{sin\left(90-2x\right)}{2sin2x.cos2x}\)

\(=\frac{cos2x}{2sin2x.cos2x}=\frac{1}{2sin2x}\)

3/

\(4cos\left(60+a\right)cos\left(60-a\right)+2sin^2a\)

\(=2\left(cos\left(60+a+60-a\right)+cos\left(60+a-60+a\right)\right)+2sin^2a\)

\(=2cos120+2cos2a+2\left(\frac{1-cos2a}{2}\right)\)

\(=-1+2cos2a+1-cos2a=cos2a\)