K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

* Xét ΔABM và ΔMCE: AM=ME

\(\widehat{AMB}=\widehat{CME}\)

BM=MC

⇒ ΔABM = ΔMCE (c.g.c)

⇒ CE=AB ( 2 cạnh tương ứng)

\(\widehat{BAM}=\widehat{CEM}\)( 2 góc tương ứng)

Vì AB<AC

⇒ CE<AC

Xét ΔACE có: CE< AC

\(\widehat{MAC}= \widehat{CEM}\)

\(\widehat{BAM}=\widehat{CEM}\) (cmtrn)

\(\widehat{BAM}=\widehat{MAC}\) (đpcm)

6 tháng 3 2018

M A B C E // // / /

18 tháng 3 2020

A A A B B B C C C D D D M M M 1 2

Để so sánh \(\widehat{A_1}\)và \(\widehat{A_2}\),ta đưa chúng về một tam giác.Trên tia đối của tia MA,lấy điểm D sao cho MD = MA

Xét \(\Delta AMB\)và \(\Delta DMC\)có :

AM = DM(cmt)

\(\widehat{MAB}=\widehat{MDC}\)

MB = MC(vì M là trung điểm của BC)

=> \(\Delta AMB=\Delta DMC\left(c-g-c\right)\)

=> \(\widehat{A_1}=\widehat{D}\)(hai góc tương ứng)(1)

      \(AB=CD\)(hai cạnh tương ứng)

Ta có : AC > AB, AB = CD nên AC > CD

\(\Delta ACD\)có AC > CD nên \(\widehat{D}>\widehat{A_2}\)(2)

Từ (1) và (2) => \(\widehat{A_1}>\widehat{A_2}\)hay \(\widehat{MAC}< \widehat{BAM}\)

19 tháng 3 2018

Tự vẽ hình đc ko bạn

19 tháng 3 2018

VÌ MA=MD ,MB=MA ,GOC AMB=GOC CMD

\(\Rightarrow\Delta AMB=\Delta DMC\left(c.g.c\right)\)

SUY RA GÓC BAM=GÓC MDC VS AB=CD

MA AB<AC SUY RA DC<AC

SUY RA GÓC CAM<GÓC CDM

SUY RA GÓC BAM>GÓC CAM

HISINOMA KINIMADO Anh yếu phần này lắm e ạ :)) Sợ nhất phần này luôn ... sorry ...

a: Xét tứ giác ABDC có

M là trung điểm của AD
M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: BA//DC

=>\(\widehat{BAM}=\widehat{CDM}\)

b: Ta có: \(\widehat{BAM}=\widehat{CDM}\)

mà \(\widehat{CDM}>\widehat{MAC}\)(DA>DC)

nên \(\widehat{BAM}>\widehat{MAC}\)

Trên tia đối của tia MA lấy N sao cho NM = MA

Xét \(\Delta\)MAB và \(\Delta\)MNC có :

  • MB = MC ( gt )
  • Góc BMA = góc CMN ( đđ )
  • MA = MN ( gt )

\(\Rightarrow\)\(\Delta\)MAB = \(\Delta\)MNC ( c - g - c )

\(\Rightarrow\)CN = AB ( hai cạnh tương ứng )

Mà AB < AC \(\Rightarrow\)CN < AC 

                      \(\Rightarrow\)MÂC < góc ANC

Mà góc ANC = BÂM ( vì\(\Delta\)MAB = \(\Delta\)MNC )

\(\Rightarrow\)MÂB > MÂC ( đpcm )

27 tháng 7 2017

Ta có AB < AC, mà AC = BG nên AB < BG. Do đó ^AGB < ^GAB, mà ^AGB = ^HAC (câu a) nên ^HAC < ^GAB (1).

Tam giác AGH cân tại A, đường trung tuyến AM => ^GAM = ^HAM (2).

Từ (1) và (2) => ^BAM = ^GAM - ^GAB < ^HAM - ^HAC = ^MAC.

27 tháng 7 2017

c) Từ câu a => tam giác AGH cân tại A, đường trung tuyến AM đồng thời là đường cao nên AM vuông góc GH.

Hai đường cao BE, CF cắt nhau tại O nên O là trực tâm của tam giác ABC. Do đó AO vuông góc BC.

AM cắt BC tại K, ta thấy ^OAM = 90 độ - ^AKB; ^BNG = 90 độ - ^MKN; hai góc AKB và MIN đối đỉnh với nhau nên ^OAM = ^BNG.

Ý sau đợi mình suy nghĩ ^^^