K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

Giải bài 4 trang 88 SGK hình học 10 | Giải toán lớp 10

Giả sử Elip có phương trình Giải bài 4 trang 88 SGK hình học 10 | Giải toán lớp 10

Độ dài trục lớn bằng 80cm ⇒ 2a = 80cm ⇒ a =40cm

Độ dài trục nhỏ bằng 40cm ⇒ 2b = 40cm ⇒ b = 20cm

Khi đó Giải bài 4 trang 88 SGK hình học 10 | Giải toán lớp 10 ⇒ F1F2 = 2c = 40√3 cm

Khoảng cách từ vị trí hai chiếc đinh F1, F2 đến hai mép là:

Giải bài 4 trang 88 SGK hình học 10 | Giải toán lớp 10

Độ dài vòng dây cuốn: MF1 + MF2 + F1F2 = 2a + 2c = 80 + 40√3 ≈ 149,3cm.

12 tháng 4 2016

Ta có: 2a  = 80 => a = 40

           2b = 40 => b = 20

 

 c2 = a2 – b= 1200   => c = 20√3

Phải đóng đinh tại các điểm  F, F2   và cách mép ván:

F2A  = OA – OF= 40 – 20√3

=> F2A = 20(2 – √3)   ≈  5,4cm

Chu vi vòng dây bằng:   F1.F2+ 2a  =   40√3 + 80

                             =>  F1.F+ 2a  =   40(2 + √3)

                                   F1.F+ 2a  ≈ 149,3cm

30 tháng 3 2017

Ta có: 2a = 80 => a = 40

2b = 40 => b = 20

c2 = a2 – b2 = 1200 => c = 20√3

Phải đóng đinh tại các điểm F1 , F2 và cách mép ván:

F2A = OA – OF2 = 40 - 20√3

=> F2A = 20(2 - √3) ≈ 5,4cm

Chu vi vòng dây bằng: F1.F2+ 2a = 40√3 + 80

=> F1.F2 + 2a = 40(2 + √3)

F1.F2 + 2a ≈ 149,3cm

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Từ giải thiết ta có: \(2a = 80 \Rightarrow a = 40,2b = 40 \Rightarrow b = 20\)

Suy ra, \(c = \sqrt {{a^2} - {b^2}}  = 20\sqrt 3 \)

Suy ra vị trí đinh cách mép là \(a - c = 40 - 20\sqrt 3 = 5,36\) cm

Chiều dài vòng dây là \(2a + 2c = 2.40 + 2.20\sqrt 3 = 149,28\) cm

Vậy phải ghim hai cái đinh cách các mép tấm bìa 5,36 cm và lấy vòng dây có độ dài là 149,28 cm

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Ta vẽ lại parabol và chọn hệ trục tọa độ như hình dưới

Giả sử phương trình chính tắc của parabol có dạng \({y^2} = 2px\)

Từ giả thiết ta có: \(AB = 2{y_A} = 16 \Rightarrow {y_A} = 8 \Rightarrow A\left( {0,03;8} \right)\)

Thay tọa độ điểm vào phương trình \({y^2} = 2px\)ta được \({8^2} = 2p.0,03 \Rightarrow p = \frac{{3200}}{3}\)

Vậy Phương trình chính tắc của parabol có dạng \({y^2} = \frac{{6400}}{3}x\)

b) Thay \(x = 1\)vào phương trình \({y^2} = \frac{{6400}}{3}x\) ta có \({y^2} = \frac{{6400}}{3}.1 \Rightarrow y = \frac{{80\sqrt 3 }}{3} \simeq 46,2\)

Vậy điểm có độ võng 1 cm cách tâm ván gỗ gần bằng 46,2 m

Chú ý khi giải: đổi về cùng đơn vị đo

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\)....
Đọc tiếp

Lấy một tấm bìa, trên đó đánh dấu hai điểm \({F_1}\) và \({F_2}\). Lấy một cây thước thẳng với mép thước  AB có chiều dài d và một đoạn dây không đàn hồi có chiều dài l sao cho \(d - l = 2a\) nhỏ hơn khoảng cách \({F_1}{F_2}\) (hình 6a).

Đính một đầu dây vào đầu A của thước, dùng đinh ghim đầu dây còn lại vào điểm \({F_2}\). Đặt thước sao cho đầu B của thước trùng với điểm \({F_1}\). Tựa đầu bút chì vào dây, di chuyển điểm M trên tấm bìa và giữ sao cho dây luôn căng, đoạn AM ép sát vào thước, khi đó M sẽ gạch lên tấm bìa một đường (H) (xem hình 6b)

a) Chứng tỏ rằng khi M di động, ta luôn có \(M{F_1} - M{F_2} = 2a\)

b) Vẫn đính một đầu dây vào đầu A của thước nhưng đổi chỗ cố định đầu dây còn lại vào \({F_1}\), đầu B của thước trùng với \({F_2}\) sao cho đoạn thẳng BA có thể quay quanh \({F_2}\)và làm tương tự như lần đầu để bút chì M vẽ được một nhánh khác của đường (H) (hình 6c). Tính \(M{F_2} - M{F_1}\)

1
HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a) Khi điểm trùng với điểm ta có:

\(M{F_1} - M{F_2} = A{F_1} - A{F_2} = AB - A{F_2} = d - l = 2a\)

b) Tương tự khi điểm trùng với điểm ta có:

\(M{F_2} - M{F_1} = A{F_2} - A{F_1} = AB - A{F_1} = d - l = 2a\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Chiều rộng của tấm bìa là \(\overline R  = 170 \pm 2mm\), nghĩa là chiều rộng gần đúng \(R = 170\)với độ chính xác \(d = 2\)

Suy ra kích thước chiều rộng nằm trong khoảng \(\left[ {170 - 2;170 + 2} \right]\) hay \(\left[ {168;{\rm{ }}172} \right].\)

Tương tự, chiều dài của tấm bìa là \(\overline D  = 240 \pm 2mm\)

Vậy kích thước chiều dài nằm trong khoảng \(\left[ {240 - 2;240 + 2} \right]\) hay \([238;242]\)

b) Chiều rộng gần đúng là 170 mm, chiều dài gần đúng là 240 mm.

Khi đó, diện tích tấm bìa là \(S = 170.240 = 40800\;(m{m^2})\)

Diện tích đúng, kí hiệu \(\overline S \), của tấm bìa trên thỏa mãn:

\(168.238 < \overline S  < 172.242 \Leftrightarrow 39984 < \overline S  < 41624\)

Do đó \(39984 - 40800 < \overline S  - 40800 < 41624 - 40800\) hay \( - 816 < \overline S  - S < 824 \Rightarrow \left| {\overline S  - S} \right| < 824\)

Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)

Cách 2:

Diện tích tấm bìa là:

\(\overline S  = \left( {170 \pm 2} \right)\left( {240 \pm 2} \right) = 170.240 \pm \left( {170.2 + 240.2 + 2.2} \right) = 40800 \pm 824\left( {m{m^2}} \right)\)

Vậy diện tích tấm bìa là \(40800 \pm 824\;\left( {m{m^2}} \right)\)

27 tháng 9 2017

Ta có a= 13, mà

Suy ra

Dộ dài trục nhỏ là 2b= 10.

Chọn A.

18 tháng 11 2019

Giải bài 10 trang 94 SGK hình học 10 | Giải toán lớp 10

Theo đề bài có:

Độ dài trục lớn của elip bằng 769266km ⇒ A1A2 = 2a = 769266 ⇒ a = 384633

Độ dài trục nhỏ của elip bằng 768106km ⇒ B1B2 = 2b = 768106 ⇒ b = 384053

⇒ c2 = a2 – b2 = 445837880 ⇒ c ≈ 21115

⇒ F1F2 = 2c = 42230

⇒ A1F1 = A2F2 = (A1A2 – F1F2)/2 = 363518

+ Trái Đất gần Mặt Trăng nhất khi Mặt Trăng ở điểm A2

⇒ khoảng cách ngắn nhất giữa Trái Đất và Mặt Trăng bằng A2F2 = 363518 km

+ Trái Đất xa Mặt Trăng nhất khi Mặt Trăng ở điểm A1

⇒ khoảng cách xa nhất giữa Trái Đất và Mặt Trăng bằng:

A1F2 = A1F1 + F1F2 = 405748 km.