Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp: Sử dụng biến dổi toán học và các điều kiện P cực trị
Cách giải: Khi K đóng, mạch chỉ có R, C mắc nối tiếp. Khi R1, R2 thì P1 = P2 nên:
Khi K mở thì mạch R, r, L, C nối tiếp Công suất mạch cực đại là:
Công suất trên R cực đại:
Thay các giá trị tìm được vào tính hệ số công suất cuộn dây:
Đáp án D
Đáp án D
Sử dụng biến đổi toán học và các điều kiện P cực trị
Cách giải: Khi K đóng, mạch chỉ có R, C mắc nối tiếp. Khi R1, R2 thì P1 = P2 nên:
Khi K mở thì mạch R, r, L, C nối tiếp. Công suất mạch cực đại là;
Thay các giá trị tìm được vào tính hệ số công suất cuộn dây:
Bài 1:
Để công suát tiêu thụ trê mạch cực đại thì:
\((R+r)^2=(R_1+r)(R_1+r)\)
\(\Rightarrow (R+10)^2=(15+10)(39+10)\)
\(\Rightarrow R=25\Omega\)
Bài 2: Có hình vẽ không bạn? Vôn kế đo hiệu điện thế của gì vậy?
Dựa vào giản đồ xét tam giác vuông OAB có
\(\sin60=\frac{Uc}{U_{ }AB}\Rightarrow U_C=100.\sin60=50\sqrt{3}V\Rightarrow Z_C=\frac{U_C}{I}=\frac{50\sqrt{3}}{0.5}=100\sqrt{3}\Omega\)
=> \(C=\frac{1}{Z_C.\omega}\)
\(\cos60=\frac{U_R}{U_{AB}}\Rightarrow U_R=50\Omega\Rightarrow R=\frac{U_R}{I}=100\Omega\)
2. Công suất trên mạch có biểu thức
\(P=I^2R=\frac{U^2}{R^2+\left(Z_L-Z_C\right)^2}.R\\=\frac{U^2}{R^{ }+\frac{\left(Z_L-Z_C\right)^2}{R}}\)
L thay đổi để P max <=> Mẫu Min => áp dụng bất đẳng thức cô-si cho hai số không âm=> \(R=\left|Z_L-Z_C\right|\)
=> \(R=100-40=60\Omega\)
=>
Ta áp dụng kết quả sau:
Mạch RLC có R thay đổi, khi R = R1 hoặc R = R2 thì công suất của mạch như nhau là P, khi đó:
\(\begin{cases}R_1+R_2=\frac{U^2}{P}\\R_1R_2=\left(Z_L-Z_C\right)^2\end{cases}\)
\(\Rightarrow R_1R_2=Z_C^2=100^2\)(1)
Điện áp hiệu dụng giữa hai đầu tụ điện: \(U_C=IZ_C=\frac{U.Z_C}{\sqrt{R^2+Z_C^2}}\)
\(U_{C1}=2U_{C2}\)
\(\Rightarrow\frac{U.Z_C}{\sqrt{R_1^2+Z_C^2}}=\frac{2U.Z_C}{\sqrt{R^2_2+Z_C^2}}\)
\(\Rightarrow2\sqrt{R_1^2+Z_C^2}=\sqrt{R_2^2+Z_C^2}\)
\(\Rightarrow4\left(R_1^2+100^2\right)=\left(R_2^2+100^2\right)\)
\(\Rightarrow4R_1^2-R_2^2=-3.100^2\)
Rút R2 ở (1) thế vào pt trên ta đc:
\(4R_1^2-\frac{100^4}{R_1^2}=-3.100^2\)
\(\Rightarrow4R_1^4+3.100^2.R_1^2-100^4=0\)
\(\Rightarrow R_1=50\Omega\)
\(\Rightarrow R_2=20\Omega\)
Áp dụng công thức:
$P_1=\dfrac{U^2}{R_1}\cos ^2\varphi _1$ và $P_2=\dfrac{U^2}{R_2}\cos ^2\varphi _2$
$\Leftrightarrow 60=\dfrac{100^2}{50}\cos ^2\varphi _1\Leftrightarrow \cos ^2\varphi _1=\dfrac{3}{10}$
$\Leftrightarrow \cos ^2\varphi _2=\dfrac{9}{20}$
$\Leftrightarrow P_2=180$
$\dfrac{P_2}{P_1}=3$
Do tỉ lệ trong bài như vậy, nên ta có thể dễ dàng chọn một bộ số sau thỏa mãn:
Uc2 = 1, Uc1 = 2
UR1 = 1, UR2 = 2
Khi đó điện áp của mạch \(U=\sqrt{5}\)
Vậy hệ số công suất:
\(\cos\varphi_1=\frac{U_{R1}}{U}=\frac{1}{\sqrt{5}}\)
\(\cos\varphi_2=\frac{U_{R2}}{U}=\frac{2}{\sqrt{5}}\)
Bài này mình làm rồi, đáp án như của mình mới đúng. Bạn xem lại đi nhé.
Giá trị của R để công suất tiêu thụ trên biến trở là cực đại R = Z d = r 2 + Z L 2 .
→ Từ giản đồ vecto ta có: r = 10 Ω và Z L = 10 3 Ω .
→ Giá trị của biến trở để công suất tiêu thụ trên toàn mạch là cực đại
R = Z L − r = 10 3 − 10 ≈ 7 , 3 Ω
Đáp án D
Đáp án D
Khi K đóng, mạch chỉ có R, C mắc nối tiếp.
Khi R1, R2 thì P1 = P2nên:
Thay các giá trị tìm được vào tính hệ số công suất cuộn dây: