K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2017

Đáp án A

Tốc độ cực đại của vật trong quá trình dao động  v max = ωA = 4 π 6 − 3 = 12 π   cm / s

+ Tại vị trí động năng bằng 3 lần thế năng thì

x = A 2 → v = 3 2 v max = 6 3 π   cm / s  

1 tháng 1 2017

PAP I HAVE A PEN....oho

1 tháng 1 2017

PIPIEIPI

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4...
Đọc tiếp

Bài 3: Một con lắc đơn có chiều dài dây treo 1 m, dao động điều hòa tại nơi có gia tốc trọng trường g π2 m/s2.

Số lần động năng bằng thế năng trong khoảng thời gian 4 s là A. 16. B. 6. C. 4. D. 8.

Bài 4: Một vật dao động điều hoà theo phương trình x = 2cos(5πt -π/3) (cm) (t đo bằng giây).

Trong khoảng thời gian từ t = 1 (s) đến t = 2 (s) vật đi qua vị trí x = 0 cm được mấy lần? A. 6 lần. B. 5 lần. C. 4 lần. D. 7 lần. Bài 5: Một chất điểm dao động điều hòa theo phương trình x = Acos(2πt/T + π/4) (cm). Trong khoảng thời gian 2,5T đầu tiên từ thời điểm t = 0, chất điểm đi qua vị trí có li độ x = 2A/3 là A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần.

Bài 6: Một chất điểm dao động điều hoà có vận tốc bằng không tại hai thời điểm liên tiếp là t1 = 2,2 (s) và t2 = 2,9 (s). Tính từ thời điểm ban đầu (to = 0 s) đến thời điểm t2 chất điểm đã đi qua vị trí cân bằng A. 9 lần. B. 6 lần. C. 4 lần. D. 5 lần

. Bài 7: Một vật dao động điều hoà theo phương trình: x = 2cos(5πt - π/3) (cm). Trong giây đầu tiên kể từ lúc bắt đầu dao động vật đi qua vị trí có li độ x = -1 cm theo chiều dương được mấy lần? A. 2 lần. B. 3 lần. C. 4 lần. D. 5 lần.

Bài 8: Một chất điểm dao động điều hoà tuân theo quy luật: x = 5cos(5πt - π/3) (cm). Trong khoảng thời gian t = 2,75T (T là chu kì dao động) chất điểm đi qua vị trí cân bằng của nó A. 3 lần. B. 4 lần. C. 5 lần. D. 6 lần.

Bài 9: Một chất điểm dao động điều hòa với phương trình: x = 4cos(4πt + π/3) (cm). Trong thời gian 1,25 s tính từ thời điểm t = 0, vật đi qua vị trí có li độ x = -1 cm A. 3 lần.                B. 4 lần.                 C. 5 lần.                 D. 6 lần. Bài 10: Chất điểm dao động điều hòa với phương trình: x = Acos(2πt/T + π/4) (cm). Trong thời gian 2,5T kể từ thời điểm t = 0, số lần vật đi qua li độ x = 2A/3 làπ A. 6 lần. B. 4 lần. C. 5 lần. D. 9 lần. 

0
12 tháng 8 2016

Hỏi đáp Vật lýHỏi đáp Vật lý

12 tháng 8 2016

Hỏi đáp Vật lý

12 tháng 8 2016

Vật qua x = 2cm là qua M1 và M2

Vật quay 1 vòng (1 chu kì) qua x = 2 là 2 lần.

Qua lần thứ 2009 thì quay 1004 vòng rồi đi từ M0 đến M1

Từ hình vẽ ta có góc quét :

\(\Delta\varphi=1004.2\pi+\frac{\pi}{6}\Rightarrow t=\frac{\Delta\varphi}{\omega}=502+\frac{1}{24}=\frac{12049}{24}s\)

6 tháng 8 2015

\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)

Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)

Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.

10π v 5π M N -10π O

Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600

Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)

Đáp án B.

7 tháng 8 2015

Phynit: cam on ban nhieu nhe :)

 

O
ongtho
Giáo viên
8 tháng 10 2015

Áp dụng: \(A^2 = x^2 + \frac{v^2}{\omega^2} \Rightarrow v = \pm\omega\sqrt{A^2-x^2}\),

Thay số, ta được v = \(\pm\) 25,12 cm/s.

7 tháng 6 2017

sai rồi ạ, bạn chưa xem pha ban đầu Pi/3

23 tháng 8 2016

Khi vật qua VTCB \Rightarrow 
v_{Max} = \omega A = 1 (cm/s)
a_{Max} = \omega^2 A = 1,57 \approx \frac{\pi}{2} (cm/s^2)
\frac{a_{Max}}{v_{Max}} = \frac{\omega ^2 A}{\omega A} = \omega = \frac{\pi}{2} (rad/s)
\Rightarrow T = \frac{2 \pi}{\omega } = 4 (s)

2 tháng 10 2015

Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)

Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)

t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)

Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)