K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

Đáp án B.

Ta có 1 + a + a 2 + … + a n = 1 − a n + 1 1 − a  

a < 1 ⇒ a n + 1 → 0  khi

n → − ∞ ⇒ 1 + a + a 2 + … + a n + … = 1 1 − a  

20 tháng 9 2015

hoc24.net giúp em với

22 tháng 4 2016

Bạn xem lời giải của mình nhé:

Giải:

A luôn > 0 (vì các số hạng trong tổng A đều lớn hơn 0)(1)

 \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\\ 2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\\ 2A-A=1-\frac{1}{2^{100}}< 1\)

\(A< 1\)(2)

Từ (1) và (2) \(\Rightarrow0< A< 1\left(đpcm\right)\)

Chúc bạn học tốt!hihi

 

8 tháng 4 2016

khó quá bạn ơi!lolang

Áp dụng công thức k/n*m=k/n-k/m trong đó n-m=k hoặc m-n=k

thế vào ta có

A=1/2*3+1/4*5+...+1/98*99

tớ biết tới đó thôi để từ từ tớ suy nghĩ rồi trả lời cho

 

22 tháng 4 2016

A=1/21+1/22+1/23+...+1/40(có 20 phân số)

A<1/20+1/20+1/20+..+1/20(có 20 phân số)

A<20/20=1(1)

A>1/40+1/40+1/40+...+1/40(có 20 phân số)

A>20/40=1/2(2)

từ (1);(2) ta kết luận 1/2<A<1(câu 1)

dễ thấy A=.1/2+1/2^2+1/2^3+...+1/2^200

             A<1/1*2+1/2*3+...+1/200*201

              A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/200-1/201

             A<1-1/201<1

            A<1

KL:0<A<1

 

22 tháng 4 2016

thanks bạn nhahaha

5 tháng 3 2016

\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(=>Q=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{a+c}+1\right)+\left(\frac{c}{a+b}+1\right)-3\)

\(=>Q=\left(\frac{a+b+c}{b+c}\right)+\left(\frac{a+b+c}{a+c}\right)+\left(\frac{a+b+c}{a+b}\right)-3\)

\(=>Q=\left(a+b+c\right).\left(\frac{1}{b+c}+\frac{1}{a+c}+\frac{1}{a+b}\right)-3\)

\(=>Q=259.15-3=3882\)

Vậy Q=3882

5 tháng 3 2016

\(Q=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=\frac{259-\left(b+c\right)}{b+c}+\frac{259-\left(a+c\right)}{a+c}+\frac{259-\left(a+b\right)}{a+b}\)

\(=259.\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)+\left[\frac{-\left(b+c\right)}{b+c}+\frac{-\left(a+c\right)}{a+c}+\frac{-\left(a+b\right)}{a+b}\right]\)

tới đây tự làm tiếp

28 tháng 4 2016

Chào bạn, bạn hãy theo dõi bài giải của mình nhé!

Ta có : 

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(=>2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

\(=>2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(=>A=1-\frac{1}{2^{100}}\)

Ta có : \(1>\frac{1}{2^{100}}=>A>1-1=0\)

\(\frac{1}{2^{100}}>0=>1-\frac{1}{2^{100}}< 1-0=1\)

\(=>0< A< 1\)

Chúc bạn học tốt!

28 tháng 4 2016

Dễ thấy A>0(vì 1/2>0;1/2^2>0;...;1/2^100>0 =>1/2+1/2^2+1/2^3+...+1/2^100>0)

2A=1+2/2^2+2/2^3+...+2/2^100(rút gọn 1 bước)

2A=1+1/2+1/2^2+...+1/2^99

2A-A=(1+1/2+1/2^2+...+1/2^99)-(1/2+1/2^2+1/2^3+...+1/2^99+1/2^100)

A=1-1/2^100<1

Vậy A<1

Cậu tự KL nhé