K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

Bạn cho đề sai rồi

31 tháng 7 2018

a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{ABD}\)=\(\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\) )

BD chung ( gt )

\(\widehat{BAD}\)\(\widehat{BED}\)( = 90o )

\(\Rightarrow\Delta ABD=\Delta BED\)( ch - gn )

\(\Rightarrow AB=BE\)( 2 cạng t.ư )

b, Xét \(\Delta ABE\)có :

AB = AE ( câu a ) \(\Rightarrow\Delta ABE\)cân tại B

BF là đường p/g của \(\Delta ABE\)

\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE

c, Ta có : \(AB\perp AC\left(gt\right)\)

              \(DK\perp AC\left(gt\right)\)

\(\Rightarrow AB//DK\)

\(\Rightarrow\widehat{ABD}\)\(\widehat{BDK}\)(SLT)

Mà \(\widehat{ABD}\)=  \(\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))

\(\Rightarrow\widehat{BDK}\)\(\widehat{DBK}\)

Xét \(\Delta DBK\)có :

\(\widehat{BDK}\)\(\widehat{DBK}\)(cmt) 

\(\Rightarrow\Delta BDK\)cân tại K

\(\Rightarrow BK=KD\left(đpcm\right)\)

d, Xét \(\Delta ABH\)có : AB < BH + AH

Xét \(\Delta AHC\)có : AC < AH + CH

\(\Rightarrow AB+AC< AH+BH+AH+CH\)

Hay \(AB+AC< BC+2AH\left(đpcm\right)\)

26 tháng 7 2018

a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :

\(\widehat{ABD}\)\(=\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\))

BD chung ( gt )

\(\widehat{BAD}\)\(=\widehat{BED}\)( = 90)

\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)

\(\Rightarrow AB=BE\)( 2 cạnh t.ư )

b, Xét \(\Delta ABE\)có :

AB = BE ( câu a )

\(\Rightarrow\)\(\Delta ABE\)cân tại B

Mà BF là đường p/g của \(\Delta ABE\)

\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE

c, Ta có :

\(\hept{\begin{cases}AB\perp AC\left(gt\right)\\DK\perp Ac\left(gt\right)\end{cases}}\Rightarrow\hept{ }AB//DK\)

\(\Rightarrow\widehat{ABD=}\)\(\widehat{BDK}\)(SLT)

\(\widehat{ABD}\)\(=\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))

\(\Rightarrow\widehat{BDK}\)\(=\widehat{DBK}\)

Xét \(\Delta BDK\)có :

\(\widehat{BDK}\)\(=\widehat{DBK\left(cmt\right)}\)

\(\Rightarrow\Delta BDK\)cân tại K

\(\Rightarrow BK=DK\left(dpcm\right)\)

d, Xét \(\Delta ABH\)có : \(AB< BH+AH\)(1)

Xét \(\Delta AHC\)có : \(AC< AH+CH\)(2)

Từ (1) và (2) \(\Rightarrow AB+AC< AH+BH+AH+CH\)

Hay \(AB+AC< BC+2AH\left(dpcm\right)\)

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH và DA=DH

b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó: ΔDAK=ΔDHC

Suy ra: DK=DC và AK=HC

c: Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

d: Ta có: BA=BH

nên B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

nên D nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABC}\),E∈BC)

Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)

⇒BA=BE(hai cạnh tương ứng)

b) Ta có: BA=BE(cmt)

nên B nằm trên đường trung trực của AE(định lí đường trung trực của một đoạn thẳng)(1)

Ta có: ΔABD=ΔEBD(cmt)

⇒DA=DE(hai cạnh tương ứng)

hay D nằm trên đường trung trực của AE(định lí đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE(đpcm)

a: Tacó ΔABC cân tại A

mà AD là đường phân giác

nên D là trug điểm của BC và AD\(\perp\)BC

=>DB=DC

b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có

AD chung

\(\widehat{HAD}=\widehat{KAD}\)

Do đó ΔAHD=ΔAKD

Suy ra: DH=DK

11 tháng 7 2018

đồ hâm!