Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)\(=\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\))
BD chung ( gt )
\(\widehat{BAD}\)\(=\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\)( 2 cạnh t.ư )
b, Xét \(\Delta ABE\)có :
AB = BE ( câu a )
\(\Rightarrow\)\(\Delta ABE\)cân tại B
Mà BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có :
\(\hept{\begin{cases}AB\perp AC\left(gt\right)\\DK\perp Ac\left(gt\right)\end{cases}}\Rightarrow\hept{ }AB//DK\)
\(\Rightarrow\widehat{ABD=}\)\(\widehat{BDK}\)(SLT)
Mà\(\widehat{ABD}\)\(=\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)\(=\widehat{DBK}\)
Xét \(\Delta BDK\)có :
\(\widehat{BDK}\)\(=\widehat{DBK\left(cmt\right)}\)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=DK\left(dpcm\right)\)
d, Xét \(\Delta ABH\)có : \(AB< BH+AH\)(1)
Xét \(\Delta AHC\)có : \(AC< AH+CH\)(2)
Từ (1) và (2) \(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(dpcm\right)\)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH và DA=DH
b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
\(\widehat{ADK}=\widehat{HDC}\)
Do đó: ΔDAK=ΔDHC
Suy ra: DK=DC và AK=HC
c: Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH
và AK=HC
nên BK=BC
d: Ta có: BA=BH
nên B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
nên D nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
a) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABC}\),E∈BC)
Do đó: ΔABD=ΔEBD(cạnh huyền-góc nhọn)
⇒BA=BE(hai cạnh tương ứng)
b) Ta có: BA=BE(cmt)
nên B nằm trên đường trung trực của AE(định lí đường trung trực của một đoạn thẳng)(1)
Ta có: ΔABD=ΔEBD(cmt)
⇒DA=DE(hai cạnh tương ứng)
hay D nằm trên đường trung trực của AE(định lí đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra BD là đường trung trực của AE(đpcm)
a: Tacó ΔABC cân tại A
mà AD là đường phân giác
nên D là trug điểm của BC và AD\(\perp\)BC
=>DB=DC
b: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)
Do đó ΔAHD=ΔAKD
Suy ra: DH=DK
Bạn cho đề sai rồi
a, Xét \(\Delta ABD\)và \(\Delta EBD\)có :
\(\widehat{ABD}\)=\(\widehat{EBD}\)( BD là tia p/g của \(\widehat{ABC}\) )
BD chung ( gt )
\(\widehat{BAD}\)= \(\widehat{BED}\)( = 90o )
\(\Rightarrow\Delta ABD=\Delta BED\)( ch - gn )
\(\Rightarrow AB=BE\)( 2 cạng t.ư )
b, Xét \(\Delta ABE\)có :
AB = AE ( câu a ) \(\Rightarrow\Delta ABE\)cân tại B
BF là đường p/g của \(\Delta ABE\)
\(\Rightarrow BF\perp AF\)hay BD là đường tt của AE
c, Ta có : \(AB\perp AC\left(gt\right)\)
\(DK\perp AC\left(gt\right)\)
\(\Rightarrow AB//DK\)
\(\Rightarrow\widehat{ABD}\)= \(\widehat{BDK}\)(SLT)
Mà \(\widehat{ABD}\)= \(\widehat{DBE}\)( BD là tia p/g \(\widehat{ABE}\))
\(\Rightarrow\widehat{BDK}\)= \(\widehat{DBK}\)
Xét \(\Delta DBK\)có :
\(\widehat{BDK}\)= \(\widehat{DBK}\)(cmt)
\(\Rightarrow\Delta BDK\)cân tại K
\(\Rightarrow BK=KD\left(đpcm\right)\)
d, Xét \(\Delta ABH\)có : AB < BH + AH
Xét \(\Delta AHC\)có : AC < AH + CH
\(\Rightarrow AB+AC< AH+BH+AH+CH\)
Hay \(AB+AC< BC+2AH\left(đpcm\right)\)