Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n2+n+5=n.n+n+5 =n(n+1)+5
Mà n+1 và n là 2 số tự nhiên liên tiếp nên CSTC khác 3 và 8
=>n(n+1)+2 có CSTC khác 5 và 0
=>n(n+1)+2 không chia hết cho 5
Vậy không tồn tại số tự nhiên n để n2+n+2 chia hết cho 5
không vì A=n^2+n+1 nên A luôn là 1 số lẻ
suy ra A không chia hết cho 2 nên A không chia hết cho bội của 2 là 2010
Không Vì A luôn là số lẻ => không chia hết cho 2=> không chia hết cho 2010
Ta có : n2+n+1=n(n+1)+2 la so chan nen ko co tan cung la5
Để có tận cùng là 0 thì n(n+1) co chu so tan cung la 8
Ma 2 so lien tiep nhan voi nhau ko bao gio co so tan cung la8
Suy ra : n(n+1)+2 ko chia het cho 8
Vậy ko tồn tại số tự nhiên N
n2+n+2 = n(n+1) +2
ta thấy n và n+1 là 2 số tự nhiên liên tiếp nên chúng chỉ có thể có đuôi là 0; 1; 2; 6
suy ra: n2+n+2 = n(n+1) +2 chỉ có thể mang đuôi 2; 3; 4; 8 nên không chia hết cho 5
Không tồn tại số tự nhiên n thỏa mãn đầu bài