Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu trả lời là mới hok lp 5 sang năm lên lp 6 :)
Gọi 2 số đó là a và b, ƯCLN(a,b)=d
=>a=da'
b=db'
(a',b')=1
BCNN(a,b)=da'b'
Tổng ƯCLN và BCNN là d+da'b'=d(a'b'+1)=126
126 phân tích ra thừa số nguyên tố là 2.32.7
Do đó d=2 hoặc a'b'+1=2
Nếu d=2 thì a'b'+1=126:2=63
a'b'=62. Giả sử a>b thì a'>b'
TH1: a'=31, b'=2 =>a=31.2=62, b=2.2=4. a-b=58
TH2 a'=62, b'=1 =>a=62.2=124, b=2. a-b=122.
Hiệu nhỏ nhất nếu d=2 là 58
Tiếp theo ta xét
a'b'+1=2
a'b=1
=>a'=b'=1
Khi đó d=126:2=63
Ta có a=63, b=63
a-b=0
Tuy nhiên đề bài yêu cầu tìm hiệu dương mà số 0 ko dương cũng ko âm
Vậy 2 số cần tìm là 62 và 4
Cách hai:
Theo bài ra ta có:
\(\left\{{}\begin{matrix}x=24.k\\y=24.d\end{matrix}\right.\) (\(k;d\)) =1 \(x-y\) đạt giá trị lớn nhất ; \(k;d\in\)N
A = 24\(k-24d\) = 24(\(k-d\))
Amax ⇔ kmax; dmin
24\(k\) ≤ 999 ⇒ \(k\) ≤ 41,625 ⇒ \(k\) = 41
24\(d\) ≥ 100 ⇒ \(d\) ≥ 100: 24 = 4,1 ⇒ \(d\) = 5
(5; 41)= 1
Vậy k = 41; d = 5 (thỏa mãn)
Số lớn cần tìm là: 24. 41 = 984
Số bé cần tìm là: 24. 5 = 120
Kết luận:...
để được hiệu lớn nhất thì số bị trừ phải lớn nhất có thể, số trừ phải bé nhất có thể.
Số nhỏ nhất có 3 chữ số chia hết cho 24 là:
24 \(\times\) 5 = 120
Số lớn nhất có 3 chữ số chia hết cho 24 là:
24 \(\times\) 41 = 984
VI (5; 41)= 1 vậy 24 là ước chung lớn nhất của 120 và 984
Vậy hai số thỏa mãn yêu cầu đề bài là: 120 và 984
ghjkllkjhjkl;lkjhgjklkjhgglkjhgk;lkjhglkjhgfbnmlkjhgfdfghjkoiuy654wsxcvbnml[p098765rdcvbnklp098765rfvbnm,;ơp09876t5rdcvbnmklo987yt
4j48hnh4y5j4h84y5484hu5j8rm74srky448dj48jd48dtju44tku8m4m48mu48t4m48mhhmm64nbdmi fkcmnhkymkutj65.5kl62.26khv62k62,y62m2du525y5yk55ky65ku5d1tm5151uy51yy51f1u51fyu51u,ỳ,yu51ufy,4141,iyu,4141,yu41ymm441mu41uymu41ymu41m41m4141ymu41mu41mu41mm151mm151mu15ymu1muy41myu41myu41muy41ymu41ymu4ymuym4hyusejkhl;kợpbowighhfjkmeslgrdthflhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhllllllllllllllllkbn zdgoknmz 2nxf41fxnh651hf651fhm651fm651fhm651fhm651hm5166fhm651f51fhm61gjm51jmg51,kc51jc,g51jm51
mx51
jy565';liuytrefghjklkjuytrfghjkl;';lkijuhygyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyytttttttttttttttttttttttttttrewdfghjkl;ưlkjuytreaasdfghjkl;'77]ôpiuytrfghjkl;lkjhgfdszxcvbhnjklkjhgfdscvbnjkl;lkjhgf lkjhgvbnmk,l.;l,kmnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn jnjjjjjjjjjjjjj hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh 8596859685296850968351525122162983465154545456591346195094846846598455461953561845579463177649163466598288188499
Gọi hai số đó là \(a,b\)(\(a\ge b\ge1\))
\(\left(a,b\right)=6\Rightarrow a=6m,b=6n,\left(m,n\right)=1,m\ge n\).
\(ab=\left[a,b\right].\left(a,b\right)=120.6=720\)
\(ab=6m.6n=36mn=720\Leftrightarrow mn=20\)
Vì \(m\ge n,\left(m,n\right)=1\)nên ta có bảng giá trị:
m | 20 | 5 |
n | 1 | 4 |
a | 120 | 30 |
b | 6 | 24 |
Lan nói đúng. mk chứng minh bằng ví dụ
6 - (-3) = 6 + 3 = 9
9 lớn hơn cả 6 và 3(chứng minh của Lan)
Gọi 2 số đó là x và y
Theo đề bài ta có: x+y=288 và (x,y)=24
Như vậy ta có x và y cùng chia hết cho 24. Đặt x=24a;y=24b. Khi a,b nguyên tố cùng nhau hay (a,b)=1
Thay vào ta được a+b=12, kết hợp với (a,b)=1. Ta suy ra các cặp (a,b) thỏa mãn là: (1,11),(11,1),(5,7),(7,5)
Từ đó ta suy ra các cặp (x,y) là: (24,264),(264,24),(120,168),(168,120).
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a + b = 66 (1)
GCD(a, b) = 6 (2)
Ta cần tìm hai số tự nhiên a và b sao cho có một số chia hết cho 5. Điều này có nghĩa là một trong hai số a và b phải chia hết cho 5.
Giả sử a chia hết cho 5, ta có thể viết lại a và b dưới dạng:
a = 5m
b = 6n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
5m + 6n = 66
Để tìm các giá trị của m và n, ta có thể thử từng giá trị của m và tính giá trị tương ứng của n.
Thử m = 1, ta có:
5 + 6n = 66
6n = 61
n ≈ 10.17
Vì n không là số tự nhiên, nên m = 1 không thỏa mãn.
Thử m = 2, ta có:
10 + 6n = 66
6n = 56
n ≈ 9.33
Vì n không là số tự nhiên, nên m = 2 không thỏa mãn.
Thử m = 3, ta có:
15 + 6n = 66
6n = 51
n ≈ 8.5
Vì n không là số tự nhiên, nên m = 3 không thỏa mãn.
Thử m = 4, ta có:
20 + 6n = 66
6n = 46
n ≈ 7.67
Vì n không là số tự nhiên, nên m = 4 không thỏa mãn.
Thử m = 5, ta có:
25 + 6n = 66
6n = 41
n ≈ 6.83
Vì n không là số tự nhiên, nên m = 5 không thỏa mãn.
Thử m = 6, ta có:
30 + 6n = 66
6n = 36
n = 6
Với m = 6 và n = 6, ta có:
a = 5m = 5 * 6 = 30
b = 6n = 6 * 6 = 36
Vậy, hai số tự nhiên cần tìm là 30 và 36.
Gọi hai số tự nhiên cần tìm là a và b. Theo đề bài, ta có:
a - b = 84 (1)
UCLN(a, b) = 12 (2)
Ta có thể viết lại a và b dưới dạng:
a = 12m
b = 12n
Trong đó m và n là các số tự nhiên.
Thay vào (1), ta có:
12m - 12n = 84
Chia cả hai vế của phương trình cho 12, ta có:
m - n = 7 (3)
Từ (2) và (3), ta có hệ phương trình:
m - n = 7
m + n = 12
Giải hệ phương trình này, ta có:
m = 9
n = 3
Thay m và n vào a và b, ta có:
a = 12m = 12 * 9 = 108
b = 12n = 12 * 3 = 36
Vậy, hai số tự nhiên cần tìm là 108 và 36.
1) \(a+b=66;UCLN\left(a;b\right)=6\)
\(\Rightarrow6x+6y=66\Rightarrow6\left(x+y\right)=66\Rightarrow x+y=11\)
mà có 1 số chia hết cho 5
\(\Rightarrow\left\{{}\begin{matrix}x=5\\y=6\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=6.5=30\\b=6.6=36\end{matrix}\right.\)
Vậy 2 số đó là 30 và 36 thỏa đề bài
2) \(a-b=66;UCLN\left(a;b\right)=12\left(a>b\right)\)
\(\Rightarrow12x-12y=84\Rightarrow12\left(x-y\right)=84\Rightarrow x-y=7\)
\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=12.3=36\\y=12.4=48\end{matrix}\right.\)
Vậy 2 số đó là 48 và 36 thỏa đề bài
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:: \(12a<12b\le\frac{96}{2}=48\)
=> a<b < 4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
Gọi 2 số đó là 12a và 12b, a<b
Coi BCNN(12a,12b)=k
Vì bội chung nhỏ nhất có 2 chữ số nên giá trị lớn nhất của k là 96
Có:hai số ấy,ước chung Iớn nhất của chúng,bội chung nhỏ nhất của chúng là bốn số tự nhiên khác nhau và đều có hai chữ số.
Suy ra:12a<12b\(\le\frac{96}{2}\)=48
=> a<b<4
Tất nhiên a khác 1 vì nếu a=1, 12a=12=ƯCLN(12a,12b)
=> a=2;b=3 hoặc a=3;b=4
Với a=2;b=3
=> 2 số đó là 24,36
=> ƯCLN(24;36)=12
BCNN(24,36)=72
=>chọn
Với a=3, b=4
=> 2 số đó là 36,48
=> ƯCLN(36;48)=12
BCNN(36,48)=144 -> loại
Vậy 2 số cần tìm là 24,36
ko nha
là 50 và 26