K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2016

Nếu ab = 10 thì cd = từ 11 đến 99: có 89 số

Nếu ab = 11 thì cd = từ 12 đến 99: có 88 số

...

Nếu ab = 98 thì cd = 99: có 1 số

Vậy tổng cộng có: \(1+2+3+...+89=\frac{89\cdot90}{2}=4005\)số như đề bài yêu cầu.

5 tháng 7 2016

Nếu ab = 10 thì cd có thể bằng 11;12;13;.............;99, có 89 số

       ab = 11 thì cd có thể bằng 12;13;14;15;.........;99, có 88 số.

       ab = 12 thì cd có thể bằng 13;14;15;.....................;99, có 87 số

      ......................

      ab = 98 thì cd bằng 99, có 1 số.

 Vậy số có dạng abcd mà ab<cd là:

89+88+87+........+1

= (89+1) x 89 :2

= 4005

18 tháng 5 2017

Ta có : ab - cd = 1

=> ab = 1 + cd

Giả sử n2 = abcd = 100ab + cd = 100. ( 1 + cd +cd ) = 101cd + 100

Điều kiện : 31< n < 100

=> 101cd = n2 -100 = ( n + 10 ).( n - 10 )

Vì n < 100

=> n - 10 < 90 và 101 là số nguyên tố nên n + 10 = 101

=>                                                         n          = 101 - 10 = 91

Ta có : n = 91 nên n2 = 912 = 8281

Vậy số chính phương cần tìm có dạng abcd thỏa mãn yêu cầu đề bài là 8281

22 tháng 1 2020

cho mk hỏi ngu tí tại sao 101 là số nguyên tố mà suy ra đc n + 10 = 101

1 tháng 2 2020

1. Áp dụng dãy tỉ số bằng nhau ta có:

\(\frac{x+y}{16}=\frac{x-y}{18}=\frac{x+y+x-y}{16+18}=\frac{x}{17}\)

Từ bài ra => \(\frac{x}{17}=\frac{xy}{17}\)

<=> \(x=xy\)

<=> xy - x = 0

<=> x ( y-1) =0

<=> x = 0 hoặc y = 1

+) Với x = 0 , ta có: \(\frac{y}{16}=\frac{0}{17}=-\frac{y}{18}\)=> y = 0

+) Với  y = 1; ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{x-1}{18}\)

Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x+1}{16}=\frac{x}{17}=\frac{1}{-1}=-1\Rightarrow x=-17\) thử lại thỏa mãn

Vậy x = 0; y= 0 hoặc x = -17 ; y = 1

1 tháng 2 2020

Cô ơi 2 dòng dấu cộng em chưa hiểu ạ

21 tháng 1 2020

\(\left(abcd\right)\)là kí hiệu số có 4 chữ số \(abcd\)

Từ: \(\left(ab\right)-\left(cd\right)=1\Rightarrow\left(ab\right)=1+\left(cd\right)\)

Giả sử: \(n^2=\left(abcd\right)=100\left(ab\right)+\left(cd\right)=100\left[1+\left(cd\right)\right]+\left(cd\right)=101\left(cd\right)+100\)

\(Đk:31< n< 100\)

\(\Rightarrow101\left(cd\right)=n^2-100=\left(n+10\right)\left(n-10\right)\)

Vì \(n< 100\Rightarrow n-10< 90\)và 101 là số nguyên tố nên: \(n+10=101\Rightarrow n=91\)

Thử lại: số chính phương \(91^2=8281\)thỏa \(Đk:82-81=1\)

Với \(x=0\) thì \(\frac{y}{16}=\frac{-y}{18}=\frac{0}{17}\)\(\Rightarrow\)\(y=0\)

Với \(x\ne0\) ta có : 

\(\frac{xy}{17}=\frac{x+y}{16}=\frac{x-y}{18}=\frac{x+y+x-y}{16+18}=\frac{2x}{34}=\frac{x}{17}\)

\(\Rightarrow\)\(\frac{xy}{17}=\frac{x}{17}\)\(\Leftrightarrow\)\(\frac{y}{17}=\frac{1}{17}\)\(\Leftrightarrow\)\(y=1\)

Mà \(\frac{x+y}{16}=\frac{xy}{17}\)\(\Leftrightarrow\)\(\frac{x+1}{16}=\frac{x}{17}\)\(\Leftrightarrow\)\(x=-17\) ( nhận ) 

Vậy \(\left(x;y\right)=\left\{\left(0;0\right);\left(-17;1\right)\right\}\)