Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. x = 2
b. x = -1
c. y = 2
d. x = 1
e. y= -2018
a)\(\left(x-2\right)\left(x-3\right)=0\)
Hoặc \(x-2=0\Leftrightarrow x=2\)(nhận)
Hoặc \(x-3=0\Leftrightarrow x=3\)(nhận)
b)\(\left(x+1\right)\left(x^2+1\right)=0\)
Hoặc \(x+1=0\Leftrightarrow x=-1\)(nhận)
Hoặc\(x^2+1=0\Leftrightarrow x^2=-1\)(vô lí)
c)\(5.y^2-20=0\)
\(\Rightarrow5.y^2=20\)
\(\Rightarrow y^2=4\)
\(\Rightarrow\hept{\begin{cases}y=2\\y=-2\end{cases}}\)
d)\(|x-2|-1=0\)
\(\Rightarrow|x-2|=1\)
\(\Rightarrow\hept{\begin{cases}x-2=1\\x-2=-1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=1\end{cases}}\)
e)\(|y-1|-2019=0\)
\(\Rightarrow|y-1|=2019\)
\(\Rightarrow\hept{\begin{cases}y-1=2019\\y-1=-2019\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}y=2020\\y=-2018\end{cases}}\)
HOK TOT
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
a,ta co : \(2\left(x+1\right)=3\left(4x-1\right)\)
\(< =>2x+2=12x-3\)
\(< =>10x=5\)\(< =>x=\frac{1}{2}\)
khi do : \(P=\frac{2x+1}{2x+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b, ta co : \(\left(x-5\right)\left(y^2-9\right)=0\)
\(< =>\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=5\\y=\pm3\end{cases}}\)
xong nhe
Cái này thì EZ mà sư phụ : ]
a) 2(x+1) = 3(4x-1)
=> 2x + 2 = 12x - 3
=> 2x - 12x = -3 - 2
=> -10x = -5
=> x = 1/2
Thay x = 1/2 vào P ta được : \(\frac{2\cdot\frac{1}{2}+1}{2\cdot\frac{1}{2}+5}=\frac{1+1}{1+5}=\frac{2}{6}=\frac{1}{3}\)
b) \(A=\left(x-5\right)\left(y^2-9\right)=0\)
=> \(\orbr{\begin{cases}x-5=0\\y^2-9=0\end{cases}}\)
\(x-5=0\Rightarrow x=5\)
\(y^2-9=0\Rightarrow y^2=9\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy ta có các cặp x, y thỏa mãn : ( 5 ; 3 ) ; ( 5 ; -3 )
a) \(A=\left|x+\frac{2}{3}\right|\ge0\)
Min A = 0 \(\Leftrightarrow x=\frac{-2}{3}\)
b) \(B=\left|x\right|+\frac{2}{3}\ge\frac{2}{3}\)
Min \(B=\frac{2}{3}\)\(\Leftrightarrow x=0\)
c) \(C=\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\)
Min C = 3 \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
d) \(F=\left|x-5\right|+\left|x+4\right|\ge\left|5-x+x+4\right|=\left|9\right|=9\)
Min F = 9
\(\Leftrightarrow x\ge5\)
Ta có : \(A=\left|x+\frac{2}{3}\right|\ge0\forall x\)
Dấu "=" xảy ra <=> x + 2/3 = 0 => x = -2/3
Vậy GTNN của A là 0 khi x = -2/3
b) Vì \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+\frac{1}{3}\ge\frac{1}{3}\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy GTNN của B là 1/3 khi x = 0
c) \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\forall x\\\left|y\right|\ge0\forall y\end{cases}}\Rightarrow\left|x-\frac{1}{2}\right|+\left|y\right|+3\ge3\forall x;y\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-\frac{1}{2}=0\\y=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=0\end{cases}}\)
Vậy GTNN của C là 3 <=> x = 1/2 ; y = 0
d) Ta có F = |x - 5| + |x + 4| = |5 - x| + |x + 4| \(\ge\)|5 - x + x + 4| = |9| = 9
Dấu "=" xảy ra <=>\(\left(5-x\right)\left(x+4\right)\ge0\)
TH1 : \(\hept{\begin{cases}5-x\le0\\x+4\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge5\\x\le-4\end{cases}}\left(\text{loại}\right)\)
TH2 : \(\hept{\begin{cases}5-x\ge0\\x+4\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le5\\x\ge-4\end{cases}}\Rightarrow-4\le x\le5\left(tm\right)\)
Vậy GTNN của F là 9 khi \(-4\le x\le5\)
a. Để \(\frac{x+2}{x-1}\) có nghĩa thì \(x-1\ne0\Leftrightarrow x\ne1\)
b. Thay số vào rồi tính là ra nhé bạn.
c. \(f\left(x\right)=\frac{1}{4}\)
\(\frac{x+2}{x-1}=\frac{1}{4}\)
4(x + 2) = x - 1
4x + 8 = x - 1
4x - x = -1 - 8
3x = -9
x = -3
d. \(f\left(x\right)\in Z\)
\(\Rightarrow\frac{x+2}{x-1}\in Z\)
\(\Rightarrow\frac{x-1+3}{x-1}\in Z\)
\(\Rightarrow1+\frac{3}{x-1}\in Z\)
\(\Rightarrow\frac{3}{x-1}\in Z\)
Để \(\frac{3}{x-1}\in Z\) thì \(3⋮x-1\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\text{±}1;\text{±}3\right\}\)
Ta có bảng sau:
x - 1 | -1 | -3 | 1 | 3 |
x | 0 | -2 | 2 | 4 |
Vậy để f(x) có giá trị nguyên thì \(x\in\left\{-2;0;2;4\right\}\)
e. f(x) > 0
\(\Leftrightarrow\frac{x+2}{x-1}>0\)
\(\Rightarrow1+\frac{3}{x-1}>0\)
\(\Rightarrow\frac{3}{x-1}>-1\)
\(\Rightarrow x-1>-3\)
\(\Rightarrow x>-2\)
Bài 2
Ta có :
\(3y^2-12=0\)
\(3y^2=0+12\)
\(3y^2=12\)
\(y^2=12:3\)
\(y^2=4\)
\(\Rightarrow y=\pm2\)
b) \(\left|x+1\right|+2=0\)
\(\left|x+1\right|=0+2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
\(a)\) Để A đạt GTLN thì \(6-x>0\) và đạt GTNN
\(\Rightarrow\)\(6-x=1\)
\(\Rightarrow\)\(x=5\)
Suy ra : \(A=\frac{2}{6-x}=\frac{2}{6-5}=\frac{2}{1}=2\)
Vậy \(A_{max}=2\) khi \(x=5\)
Chúc bạn học tốt ~
Xét biểu thức
A = ( x + 1 ) x 2 + 2 = 0 ⇔ x + 1 = 0 x 2 + 2 = 0 ⇒ x + 1 = 0 do x 2 + 2 ≥ 2 > 0 ⇒ x = − 1
Vậy có 1 giá trị của x thỏa mãn
Chọn đáp án B