K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

+ Số cách xếp 8 học sinh nói trên ngồi xung quanh một bạn tròn là 7 !.

+ Đếm số cách xếp 8 học sinh ngồi xung quanh một bàn tròn mà hai học sinh Hải và Liên ngồi cạnh nhau:

Trước tiên, số cách xếp 7 học sinh (trừ bạn Hải sẽ xếp sau) ngồi xung quanh một bàn tròn là 6 !

Khi đó có 2 cách xếp chỗ ngồi cho bạn Hải (ở bên trái hoặc bên phải bạn Liên).

Theo quy tắc nhân, sẽ có 6!.2 cách xếp 8 bạn ngồi xung quanh một bàn tròn mà hai bạn Hải và Liên ngồi cạnh nhau.

Vậy số cách xếp chỗ ngồi sao cho Hải và Liên không ngồi cạnh nhau là: 7! – 6!.2 =6!.5.

Chọn C.

31 tháng 7 2020

Bạn bị ngược rồi, B có 3 người còn A có 4 người mà. Không sao vẫn tính là bạn đang sắp xếp A nhé, mình kí hiệu 4 học sinh A là A1 A2 A3 A4 thì ở chỗ xếp học sinh A ấy bạn mới chỉ xếp cho A1, A2, A3 hoặc A4 mà thôi nên phải nhân 4 nữa. Đáp án phải là D

AH
Akai Haruma
Giáo viên
31 tháng 7 2020

D.Công Thiện: Uh mình nhìn nhầm. Nhưng đáp án không thay đổi bạn ơi. Chỉ cần thay B bằng A thôi mà.

27 tháng 9 2021

Giải thích các bước giải:

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

28 tháng 9 2021

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

~ Chúc bn hok tốt ~

Giải thích các bước giải:

Xếp 4 bạn nam (trừ A1) và 2 bạn nữ(trừ B1) thành 1 dãy ta có 6! cách xếp

Sau đó xếp A1 và B1 vào giữa các bạn đã xếp do A1, B1 không ngồi cạnh nhau nên ta có 2 trường hợp sau:

TH1: A1 xếp ở đầu nên do khi các bạn ngồi thành bàn tròn thì suy ra B1 không được xếp ở cuối như vậy B1 có 5 cách chọn => Tương tự với B1 ở đầu => có 6!.5.2 = 7200 cách xếp

TH2: A1, B1 đều không xếp ở đầu hàng => có 5C2 cách chọn vị trí cho 2 bạn

=> có 6!.5C2.2 = 14400 cách xếp

=> có tất cả 21600 cách xếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
22 tháng 8 2021

Hồng Phúc CTV, Nguyễn Việt Lâm

27 tháng 9 2021

Đễ thế mà ko bt mh cũng ko bt luôn

16 tháng 10 2016

1. số tự nhiên có dạng abce ( nhớ gạch trê đầu ( vì đây là số tự nhiên))

*  ta có h là :

        h= mn 

           trong đó tập hợp mn là {0,1}

               => có 2 trường hợp xảy ra 

                (m,n)=(1,0) hoặc (0,1)

*  ta có số tự nhiên abhe có tập hợp {h,2,3,4,5,6,7,8,9}

    a có 9 cách chọn 

b có 8 cách chọn 

c có 7 cách chọn 

e có 6 cách chọn 

vậy có 9*8*7*6=3024 số

 *ta  phải loại trường hợp h  đứng đầu và có dạng 01

 trường hợp h  đứng đầu và có dạng 01 có số cách chọn là :

a có 1 cách chọn  là h

b có 8 cách 

c có 7 cách 

e có 6 cách 

=>  có 1*8*7*6=336 số 

 vậy số tự nhiên theo yêu cầu đề bài có tổng cộng

3024 - 332688 số 

0 chắc