Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có : \(\left(\frac{\sqrt{a}}{\sqrt{b}}\right)^2=\frac{\left(\sqrt{a}\right)^2}{\left(\sqrt{b}\right)^2}=\frac{a}{b}\)
\(\left(\sqrt{\frac{a}{b}}\right)^2=\frac{a}{b}\)
\(\Rightarrow\text{ }\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}\text{ }\left(\text{ ĐPCM}\right)\)
Nhận thấy \(a+b< a+b+2\sqrt{ab}\)<=>\(a+b< \left(\sqrt{a}+\sqrt{b}\right)^2\)
Do a,b đều dương, lấy căn 2 vế ta được:
\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)(đpcm)
Chúc bạn học tốt!
1.
a. \(0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}=5-\dfrac{2}{5}=\dfrac{23}{5}>1\)
\(\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}=\dfrac{\dfrac{\sqrt{10}}{3}-\dfrac{3}{4}}{5}=\dfrac{-9+4\sqrt{10}}{60}\approx0,06< 1\)
\(\Rightarrow0,5\sqrt{100}-\sqrt{\dfrac{4}{25}}>\dfrac{\left(\sqrt{1\dfrac{1}{9}}-\sqrt{\dfrac{9}{16}}\right)}{5}\)
2.
Ta có:
\(\left(\sqrt{a+b}\right)^2=a+b\)
\(\left(\sqrt{a}+\sqrt{b}\right)=\left(\sqrt{a}\right)^2+2\sqrt{ab}+\left(\sqrt{b}\right)^2=a+2\sqrt{ab}+b\)
=> \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\)
1b.
Áp dụng công thức trên
=> \(\sqrt{25+9}< \sqrt{25}+\sqrt{9}\)
2.
\(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\\ \Rightarrow a+b< a+2\sqrt{ab}+b\\ \Rightarrow2\sqrt{ab}>0\\ \Rightarrow\sqrt{ab}>0\)
Luôn đúng với mọi a;b dươn g
=> đpcm
\(0<2\sqrt{ab}\) cộng 2 vế với a+ b
a+b< a+b+ 2.căn(ab)
\(a+b<\left(\sqrt{a}+\sqrt{b}\right)^2\)
lấy căn 2 vế là xong
Vẽ hình tam giác có hai cạnh góc vuông \(\sqrt{a}\)và \(\sqrt{b}\), độ dài cạnh huyền là c.
Áp dụng định lý Pytago ta có: \(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2=a+b=c^2\)
\(\Rightarrow c=\sqrt{a+b}\)
Theo bất đẳng thức tam giác thì: \(\sqrt{a}+\sqrt{b}>c=\sqrt{a+b}\left(đpcm\right)\)
Ta có: \(\sqrt{\frac{a}{b+c+d}}=\sqrt{\frac{a^2}{a\left(b+c+d\right)}}=\frac{a}{\sqrt{a\left(b+c+d\right)}}\)
Xét \(\sqrt{a\left(b+c+d\right)}\le\frac{a+b+c+d}{2}\)
\(\Rightarrow\frac{a}{\sqrt{a\left(b+c+d\right)}}\ge\frac{2a}{a+b+c+d}\)
\(\Rightarrow\sqrt{\frac{a}{b+c+d}}\ge\frac{2a}{a+b+c+d}\)
(a,b,c,d>0)
Cmtt: \(\hept{\begin{cases}\sqrt{\frac{b}{a+c+d}}\ge\frac{2b}{a+b+c+d}\\\sqrt{\frac{c}{b+a+d}}\ge\frac{2c}{a+b+c+d}\\\sqrt{\frac{d}{a+b+c}}\ge\frac{2d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow\sqrt{\frac{b}{a+c+d}}+\sqrt{\frac{c}{a+b+d}}+\sqrt{\frac{a}{b+c+d}}+\sqrt{\frac{d}{a+b+c}}\)\(\ge\frac{2a+2b+2c+2d}{a+b+c+d}=2\)
Đến đây tự xử lí phần dấu "="
\(\text{Giả sử : }\sqrt{ab}=\sqrt{a}.\sqrt{b}\)
\(\Rightarrow\left(\sqrt{ab}\right)^2=\left(\sqrt{a}.\sqrt{b}\right)^2\)
\(\Rightarrow ab=\left(\sqrt{a}\right)^2.\left(\sqrt{b}\right)^2\)
\(\Rightarrow ab=a.b\left(\text{luôn đúng}\right)\)
\(\text{Vậy }\sqrt{ab}=\sqrt{a}.\sqrt{b}\left(đpcm\right)\)
\(Bạn Moharmed Salah lm đúng rồi nhé\)