\(CMR:\left|x-2015\right|+\left|2016-x\right|\ge1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2015

 

 |a| + |b| \(\ge\)|a+b|

=>|x -2015| + | 2016 -x | \(\ge\)| x -2015 + 2016 -x | = 1

28 tháng 12 2015

cute thế bn ơi tick nha mk ko bít lm mk hok loqps 5

28 tháng 12 2015

Ta có: |x-2015|+|2016-x|>=|x-2015+2016-x|=1(theo công thức : |A|+|B|>=|A+B|

=>đpcm

a: Trường hợp 1: x<2015

A=2015-x+2016=4031-x

Trường hợp 2: x>=2015

A=x-2015+2016=x+1

b: Trường hợp 1: x<2015

B=2015-x+2016-x=4031-2x

Trường hợp 2: 2015<=x<2016

B=x-2015+2016-x=1

Trường hợp 3:x>=2016

B=x-2015+x+2016=2x-4031

26 tháng 10 2016

a)Vì |x2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2

Nếu x-2015=-1/2 thì

x=2015+(-1)/2

x=4029/2

Nếu x-2015=1/2 thì

x=2015+1/2

x=4031/2

Vậy x=4029/2

hoặc x=4031/2

 

26 tháng 10 2016

b)

Nếu x>2016 thì |x2015|=x-2015 ,|x2016|=x-2016

Khi đó: |x2015|+|x2016|=2017

=>x-2015+x-2016=2017

=>2x-4031=2017

=>2x=6048=>x=3024(thỏa mãn x>2016)

Nếu 2015<x<2016 thì |x2015|=x-2015,

|x2016|=2016-x. khi đó

|x2015|+|x2016|=2017

=>x-2015+2016-x=2017

=>1=2017(vô lý loại)

Nếu x>2015 thì |x2015|=2015-x,|x2016|=2016-x

Khi đó:

|x2015|+|x2016|=2017

=>2015-x+2016-x=2017

=>4031-2x=2017

=>2x=2014=>x=1007(thỏa mãn x<2015)

Vậy x=1007 hoặc x=3024

10 tháng 1 2018

\(D=2015-5\left|x-386\right|-5\left|x-389\right|\)

\(D=2015-5\left(\left|x-386\right|+\left|389-x\right|\right)\)

\(D\le2015-5\left|x-386+389-x\right|\)

\(D\le2015-15=2000\)

Dấu "=" xảy ra khi: \(386\le x\le389\)

\(M=2016-\left|x-2015\right|-\left|x-1975\right|-\left|x-1945\right|\)

\(M=2016-\left(\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\right)\)

Đặt: \(L=\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\)

\(L=\left|x-2015\right|+\left|1945-x\right|+\left|x-1975\right|\)

\(L\ge\left|x-2015+1945-x\right|+\left|x-1975\right|\)

\(L\ge70+\left|x-1975\right|\ge70\)

Suy ra: \(M-L\le2016-70=1946\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}1945\le x\le2015\\x=1975\end{cases}}\Leftrightarrow x=1975\)

AH
Akai Haruma
Giáo viên
20 tháng 5 2020

Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$|x-2014|+|x-2016|=|x-2014|+|2016-x|\geq |x-2014+2016-x|=2$

$\Rightarrow 2=|x-2014|+|x-2015|+|x-2016|\geq 2+|x-2015|$

$\Rightarrow |x-2015|\leq 0$

Mà $|x-2015|\geq 0$ (theo tính chất trị tuyệt đối

Do đó $|x-2015|=0\Rightarrow x=2015$

Thử lại thấy thỏa mãn nên $x=2015$ là đáp án cuối cùng.