Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: |x-2015|+|2016-x|>=|x-2015+2016-x|=1(theo công thức : |A|+|B|>=|A+B|
=>đpcm
a: Trường hợp 1: x<2015
A=2015-x+2016=4031-x
Trường hợp 2: x>=2015
A=x-2015+2016=x+1
b: Trường hợp 1: x<2015
B=2015-x+2016-x=4031-2x
Trường hợp 2: 2015<=x<2016
B=x-2015+2016-x=1
Trường hợp 3:x>=2016
B=x-2015+x+2016=2x-4031
a)Vì |x−2015|= 1/2 nên x-2015=-1/2 hoặc x-2015=1/2
Nếu x-2015=-1/2 thì
x=2015+(-1)/2
x=4029/2
Nếu x-2015=1/2 thì
x=2015+1/2
x=4031/2
Vậy x=4029/2
hoặc x=4031/2
b)
Nếu x>2016 thì |x−2015|=x-2015 ,|x−2016|=x-2016
Khi đó: |x−2015|+|x−2016|=2017
=>x-2015+x-2016=2017
=>2x-4031=2017
=>2x=6048=>x=3024(thỏa mãn x>2016)
Nếu 2015<x<2016 thì |x−2015|=x-2015,
|x−2016|=2016-x. khi đó
|x−2015|+|x−2016|=2017
=>x-2015+2016-x=2017
=>1=2017(vô lý loại)
Nếu x>2015 thì |x−2015|=2015-x,|x−2016|=2016-x
Khi đó:
|x−2015|+|x−2016|=2017
=>2015-x+2016-x=2017
=>4031-2x=2017
=>2x=2014=>x=1007(thỏa mãn x<2015)
Vậy x=1007 hoặc x=3024
\(D=2015-5\left|x-386\right|-5\left|x-389\right|\)
\(D=2015-5\left(\left|x-386\right|+\left|389-x\right|\right)\)
\(D\le2015-5\left|x-386+389-x\right|\)
\(D\le2015-15=2000\)
Dấu "=" xảy ra khi: \(386\le x\le389\)
\(M=2016-\left|x-2015\right|-\left|x-1975\right|-\left|x-1945\right|\)
\(M=2016-\left(\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\right)\)
Đặt: \(L=\left|x-2015\right|+\left|x-1975\right|+\left|x-1945\right|\)
\(L=\left|x-2015\right|+\left|1945-x\right|+\left|x-1975\right|\)
\(L\ge\left|x-2015+1945-x\right|+\left|x-1975\right|\)
\(L\ge70+\left|x-1975\right|\ge70\)
Suy ra: \(M-L\le2016-70=1946\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}1945\le x\le2015\\x=1975\end{cases}}\Leftrightarrow x=1975\)
Lời giải:
Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:
$|x-2014|+|x-2016|=|x-2014|+|2016-x|\geq |x-2014+2016-x|=2$
$\Rightarrow 2=|x-2014|+|x-2015|+|x-2016|\geq 2+|x-2015|$
$\Rightarrow |x-2015|\leq 0$
Mà $|x-2015|\geq 0$ (theo tính chất trị tuyệt đối
Do đó $|x-2015|=0\Rightarrow x=2015$
Thử lại thấy thỏa mãn nên $x=2015$ là đáp án cuối cùng.
|a| + |b| \(\ge\)|a+b|
=>|x -2015| + | 2016 -x | \(\ge\)| x -2015 + 2016 -x | = 1