Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Do \(n\left(n-1\right)\left(n+1\right)\) là tích của 3 số nguyên liên tiếp (n\(\in Z\))
nên \(A⋮2.3=6\) (1)Do (2,3)=1
Ta cũng có:
\(A=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)\)
\(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)\)
Do \(=n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)⋮5\)
\(\Rightarrow A⋮5\) (2)
Từ (1); (2) \(\Rightarrow A⋮6.5=30\) Do (6,5)=1
\(A=n^5-n=n\left(n^4-1\right)\)
\(=n\left(n^2+1\right)\left(n^2-1\right)\)
\(=n\left(n^2+1\right)\left(n-1\right)\left(n+1\right)\)
\(=n\left(n^2+5-4\right)\left(n-1\right)\left(n+1\right)⋮6\)(tích 3 số liên tiếp)
\(=n\left(n^2-4\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-2\right)\left(n+2\right)\left(n-1\right)\left(n+1\right)+5n\left(n-1\right)\left(n+1\right)⋮5\left(đpcm\right)\)(tích 5 số liên tiếp và 1 tích có thừa số 5)
\(\Rightarrow A⋮30\)
\(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
Trước hết, \(a\left(a-1\right)\left(a+1\right)\)là tích của 3 số tự nhiên liên tiếp nên chia hết cho 3 (1)
Lại có \(a^5=a^{4.1}.a\)
TH1 : a chẵn, coi chữ số tận cùng của a là n \(\Rightarrow a^5=a^{4.1}.a=\left(...6\right).n=\left(...n\right)\)(Vì 6 nhân với chữ số chẵn nào cũng có tận cùng là chữ số đó )
TH2 : a lẻ, coi chữ số tận cùng của a là m \(\Rightarrow a^5=a^{4.1}.a=\left(...1\right).m=\left(...m\right)\)
Do đó \(a^5\)và \(a\)luôn có cùng chữ số tận cùng
\(\Rightarrow a^5-a\)chia hết cho 10 (2)
Từ (1)(2)\(\Rightarrow a^5-a\in BC\left(3;10\right)=B\left(30\right)\) ( Vì ƯCLN(3;10)=1 )
Vậy ...
a,\(5n^3+15n^2+10n=5n\left(n^2+3n^2+2\right)=5n\left(n^2+n+2n+2\right)=5n\left(n+1\right)\left(n+2\right)\)Nhận thấy 5n(n+1)(n+2)\(⋮5\) vì \(5⋮5\) (1)
và \(n\left(n+1\right)\left(n+2\right)⋮6\) vì n(n+1)(n+2) là ba số tự nhiên liên tiếp (2)
Từ (1)và(2)\(\Rightarrow5n\left(n+1\right)\left(n+2\right)⋮30\Rightarrowđpcm\)
b, \(n^3\left(n^2-7\right)-36n\)
\(=n\left[\left(n^2\right)\left(n^2-7\right)^2-36\right]\)
\(=n\left[\left(n^3-7n\right)^2-36\right]\)
\(=n\left(n^3-7n-6\right)\left(n^3-7n+6\right)\)
\(=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3,5,7\Rightarrow⋮105\Rightarrowđpcm\)
\(a^5-a\)
\(=a\left(a^4-1\right)\)
\(=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)⋮5\)
và \(5a\left(a-1\right)\left(a+1\right)⋮5\)
Suy ra \(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)⋮5\)
Vậy \(a^5-a⋮5\left(đpcm\right)\)
a: \(A=n^5-n=n\left(n^4-1\right)=n\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\cdot n\cdot\left(n+1\right)\left(n^2+1\right)\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp
nên \(\left(n-1\right)\left(n+1\right)\cdot n⋮3!\)
=>\(A⋮6\)(1)
Vì 5 là số nguyên tố nên \(n^5-n⋮5\)(Định lí Fermat nhỏ)
hay \(A⋮5\)(2)
Từ (1)và (2) suy ra \(A⋮30\)
b: Vì 7 là số nguyên tố nên \(a^7-a⋮7\)(Định lí Fermat nhỏ)
Ta có: a3b−ab3=a3b−ab−ab3+ab=ab(a2−1)−ab(b2−1)
=b(a−1)a(a+1)−a(b−1)b(b+1)
Do tích của 3 số tự nhiên liên tiếp thì chia hết cho 6
=> b(a−1)a(a+1);a(b−1)b(b+1)⋮6⇒a3b−ab3⋮6⇒a3b−ab3⋮6
mk chưa đk hok đến dạng này , còn phần b chắc cx như phần a thôy , pjo mk có vc bận nên tối về mk sẽ lm típ nha