Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(68^{n+1}\)- \(68^n\)
= \(68^n\). 68 - \(68^n\)
= \(68^n\)( 68 - 1 )
= \(68^n\). 67
Vậy \(68^{n+1}\)- \(68^n\)chi hết cho 54 ( n thuộc N )
:v ghi cái đề bài cũng sai
Ta có :
\(68^{n+1}-68^n=68^n\left(68-1\right)=67.68^n⋮67\) (đpcm )
Với n thuộc N và n > 1 sao cho 2n - 2 chia hết cho n
Chứng minh: \(2^{2^n}-1\)chia hết cho 2n-1
Trả lời:
a, A = 18x10yn và B = - 6x7y3
Để đa thức A chia hết cho đa thức B thì \(n\ge3\)
b, A = - 12x8y2nzn-1 và B = 2x4ynz1
Để đa thức A chia hết cho đa thức B thì \(\hept{\begin{cases}2n\ge n\\n-1\ge1\end{cases}\Leftrightarrow\hept{\begin{cases}n\ge0\\n\ge2\end{cases}\Leftrightarrow}\hept{n\ge2}}\)
Vậy để A chia hết cho B thì \(n\ge2\)
2\(x^2\)y2 - 6\(\sqrt{2}\)\(xy\) + 9
= (\(\sqrt{2}\).\(x.y\))2 - 2.\(\sqrt{2}\)\(xy\).3 + 32
= (\(\sqrt{2}\)\(xy\) - 3)2
a, 29 - 1 = 511 không chia hết cho 3.
b, \(5^6-10^4=5^6-5^4.2^4\)
\(=5^4\left(5^2-2^4\right)=5^4.9⋮9\)
c, \(\left(n+6\right)^2-\left(n-6\right)^2=\left(n+6+n-6\right)\left(n+6-n+6\right)=2n.12=24n⋮24\)
d,\(\left(3n+4\right)^2-16=9n^2+24n+16-16=9n^2+24n⋮3\)
Chúc bạn học tốt
Ta có \(68^{n+1}-689=68^n.68-68=68.\left(68^n-1\right)=68.\left(68^n-1^n\right)\)
\(=68.\left(68-1\right).\left(68+1\right)=68.67.69=67.68.69\)
Vì \(67⋮67\)nên \(67.68.69⋮67\)hay \(68^{n+1}-68\)chia hết cho \(67\)
Vậy \(68^{n+1}-68⋮67\)
:v forever alone