K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2018

Nếu \(a-11b+3c⋮17\Rightarrow2\left(a-11b+3c\right)⋮17\)

\(\Rightarrow2a-22b+6c⋮17\Rightarrow\left(2a-5b+6c\right)-17b⋮17\)

\(17b⋮17\Rightarrow2a-5b+3c⋮17\)

4 tháng 4 2018

Vì \(a-11b+3c\) chia hết cho 17 => \(2\left(a-11b+3c\right)\)chia hết cho 17 =>      \(2a-22b+6c\)

Ta có:     \(\left(2a-22b+6c\right)-\left(2a-5b+6c\right)=17b\)chia hết  cho 17

Mà 2a - 22b + 6c chia hết cho 17 nên => 2a - 5b + 6c chia hết cho 17

Vậy 2a - 5b + 6c chia hết cho 17.

8 tháng 3 2017

Ta có:\(a-11b+3c⋮17\)

\(\Rightarrow2a-22b+6c⋮17\)

Mặt khác:\(2a-22b+6c-\left(2a-5b+6c\right)\)

\(=2a-22b+6c-2a+5b-6c\)

\(\Rightarrow-17b⋮17\)

\(\Rightarrow2a-5b+6c⋮17\)

19 tháng 4 2018

a-11b+3c\(⋮\)7

=> 2a-22b+6c\(⋮\)7

2a-22b+6c - (2a-5b+6c) = -17b\(⋮\)7

=> đpcm

29 tháng 3 2018

Ta có \(a-11b+3c⋮17\)

     => \(19\left(a-11b+3c\right)⋮17\)

     => \(19a-209b+57c⋮17\)

     =>  ( 17a - 204b + 51c ) + ( 2a - 5b + 6c ) \(⋮\)17

     => 2a - 5b + 6c \(⋮\)17 ( do 17a - 204b + 51c \(⋮\)17 )   ( đpcm )

26 tháng 2 2016

nhân 2a-5b+6c với 9 rồi trừ đi a-11b+3c

7 tháng 8 2020

Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)

Ta có \(17b⋮17\)

Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)

27 tháng 3 2021

1duocgoitienganhla

Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)

Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)