K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KR
1
TL
1
NP
0
PT
1
29 tháng 3 2018
Ta có \(a-11b+3c⋮17\)
=> \(19\left(a-11b+3c\right)⋮17\)
=> \(19a-209b+57c⋮17\)
=> ( 17a - 204b + 51c ) + ( 2a - 5b + 6c ) \(⋮\)17
=> 2a - 5b + 6c \(⋮\)17 ( do 17a - 204b + 51c \(⋮\)17 ) ( đpcm )
K
0
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
7 tháng 8 2020
Ta có \(a-11b+3c⋮17\Rightarrow2a-22b+6c⋮17\)
Ta có \(17b⋮17\)
Nên \(2a-22b+6c+17b=2a-5b+6c⋮17\left(dpcm\right)\)
7 tháng 8 2020
Ta có:\(\left(2a-5b+6c\right)+15\left(a-11b+3c\right)=17a-170b+51c⋮17\)
Mà \(15\left(a-11b+3c\right)⋮17\Rightarrow2a-5b+6c⋮17\left(đpcm\right)\)
Nếu \(a-11b+3c⋮17\Rightarrow2\left(a-11b+3c\right)⋮17\)
\(\Rightarrow2a-22b+6c⋮17\Rightarrow\left(2a-5b+6c\right)-17b⋮17\)
Vì\(17b⋮17\Rightarrow2a-5b+3c⋮17\)
Vì \(a-11b+3c\) chia hết cho 17 => \(2\left(a-11b+3c\right)\)chia hết cho 17 => \(2a-22b+6c\)
Ta có: \(\left(2a-22b+6c\right)-\left(2a-5b+6c\right)=17b\)chia hết cho 17
Mà 2a - 22b + 6c chia hết cho 17 nên => 2a - 5b + 6c chia hết cho 17
Vậy 2a - 5b + 6c chia hết cho 17.