K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2016

\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=50.\frac{1}{100}=\frac{1}{2}< \frac{5}{6}\)

Vậy \(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{5}{6}\)

NV
3 tháng 6 2020

\(\pi< a< \frac{3\pi}{2}\Rightarrow\left\{{}\begin{matrix}sina< 0\\cosa< 0\end{matrix}\right.\) \(\Rightarrow sin2a=2sina.cosa>0\)

\(\Rightarrow sin2a=\sqrt{1-cos^22a}=\frac{3\sqrt{7}}{8}\)

\(cos2a=1-2sin^2a=\frac{1}{8}\)

\(\Leftrightarrow sin^2a=\frac{7}{16}\Rightarrow sina=-\frac{\sqrt{7}}{4}\)

\(\Rightarrow M=\frac{-\frac{\sqrt{7}}{4}-\frac{3\sqrt{7}}{8}}{-\frac{\sqrt{7}}{4}+\frac{3\sqrt{7}}{8}}=...\)

\(sinx\left(1-tan^2\frac{x}{2}\right)=sinx\left(1-\frac{sin^2\frac{x}{2}}{cos^2\frac{x}{2}}\right)=sinx\left(1-\frac{1-cosx}{1+cosx}\right)\)

\(=sinx\left(\frac{1+cosx-\left(1-cosx\right)}{1+cosx}\right)=\frac{2sinx.cosx}{1+cosx}\)

\(1-sin2x.sin3x-cos2x.cos3x=1-\left(cos3x.cos2x+sin3x.sin2x\right)=1-cos\left(3x-2x\right)=1-cosx\)

\(\Rightarrow\frac{1-sin2x.sin3x-cos2x.cos3x}{sinx\left(1-tan^2\frac{x}{2}\right)}=\frac{1-cosx}{\frac{2sinx.cosx}{1+cosx}}=\frac{\left(1-cosx\right)\left(1+cosx\right)}{2sinx.cosx}\)

\(=\frac{1-cos^2x}{2sinx.cosx}=\frac{sin^2x}{2sinx.cosx}=\frac{sinx}{2cosx}=\frac{1}{2}tanx\)

24 tháng 6 2016

a/ \(\frac{15}{x}-\frac{1}{3}=\frac{28}{51}\)

\(\frac{15}{x}=\frac{28}{51}+\frac{1}{3}\)

\(\frac{15}{x}=\frac{15}{17}\)

\(x=15:\frac{15}{17}\)

\(x=17\)

b) \(\frac{x}{20}-\frac{2}{5}=10\)

\(\frac{x}{20}=10+\frac{2}{5}\)

\(\frac{x}{20}=\frac{52}{5}\)

\(x=\frac{52}{5}\cdot20\)

\(x=208\)

c) \(x+\frac{18}{23}=2\frac{1}{3}\)

\(x+\frac{18}{23}=\frac{7}{3}\)

\(x=\frac{7}{3}-\frac{18}{23}\)

\(x=\frac{107}{69}\)

d) \(\frac{7}{11}< x-\frac{1}{7}< \frac{10}{13}\)

\(\Rightarrow\frac{7}{11}+\frac{1}{7}< x< \frac{10}{13}\)

\(\frac{60}{77}< x< \frac{60}{78}\)

Đến đây .....bí!

e) Tớ bỏ luôn đc ko.

 

24 tháng 6 2016

D) 7/11<X-1/7<10/13

    <=> 7/11+1/7<x< 10/13+1/7

 <=> 60/77< x< 83/91

<=> 5460/1001 <x< 6391/1001

vậy X thuộc tập hợp các phÂN số lớn hơn 5460/1001 và bé hơn 913/1001

vd :  Y/1001 trong đó y là 5461;5462;5463...6389;6390

24 tháng 4 2020

1. \(\Leftrightarrow2x+3< 0\Leftrightarrow x< -\frac{3}{2}\)

2. \(\Leftrightarrow\frac{7x-8}{x\left(x-2\right)}< 0\Leftrightarrow\left[{}\begin{matrix}x< 0\\\frac{8}{7}< x< 2\end{matrix}\right.\)

3. \(\Leftrightarrow\frac{4x-16}{\left(x+1\right)\left(x-3\right)}>0\Leftrightarrow\left[{}\begin{matrix}-1< x< 3\\x>4\end{matrix}\right.\)

4 tháng 3 2020

1, \(\frac{3x-4}{x-2}>1\\ \frac{3\left(x-2\right)}{x-2}+\frac{2}{x-2}>1\\ 3+\frac{2}{x-2}>1\\ \frac{2}{x-2}>-2\\ \frac{1}{x-2}>-1\)

\(x-2< -1\\ x< 1\)

Bài 1. A=\(\frac{1}{1}\)x\(\frac{1}{2}\)x\(\frac{1}{2}\)x\(\frac{1}{3}\)x\(\frac{1}{3}\)x\(\frac{1}{4}\)x\(\frac{1}{4}\)x\(\frac{1}{5}\)x\(\frac{1}{5}\)x\(\frac{1}{6}\) Bài 2. B=\(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+\(\frac{1}{3x4}\)+\(\frac{1}{4x5}\)+\(\frac{1}{5x6}\) Bài 3. B=\(\frac{2}{1x2}\)+\(\frac{2}{2x3}\)+\(\frac{2}{3x4}\)+\(\frac{2}{4x5}\)+\(\frac{2}{5x6}\) Bài 4. C=\(\frac{2}{1x3}\)+\(\frac{2}{3x5}\)+\(\frac{2}{5x7}\)+\(\frac{2}{7x9}\)+\(\frac{2}{9x11}\) Bài...
Đọc tiếp

Bài 1.

A=\(\frac{1}{1}\)x\(\frac{1}{2}\)x\(\frac{1}{2}\)x\(\frac{1}{3}\)x\(\frac{1}{3}\)x\(\frac{1}{4}\)x\(\frac{1}{4}\)x\(\frac{1}{5}\)x\(\frac{1}{5}\)x\(\frac{1}{6}\)

Bài 2.

B=\(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+\(\frac{1}{3x4}\)+\(\frac{1}{4x5}\)+\(\frac{1}{5x6}\)

Bài 3.

B=\(\frac{2}{1x2}\)+\(\frac{2}{2x3}\)+\(\frac{2}{3x4}\)+\(\frac{2}{4x5}\)+\(\frac{2}{5x6}\)

Bài 4.

C=\(\frac{2}{1x3}\)+\(\frac{2}{3x5}\)+\(\frac{2}{5x7}\)+\(\frac{2}{7x9}\)+\(\frac{2}{9x11}\)

Bài 5.

C=\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}+\frac{1}{110}\)

Bài 6.Tính bằng cách thuận tiện nhất.

a.(792,81 x 025 + 792,81 x 0,75) x (11 x 9 - 900 x 0,1 - 9).

b.\(\frac{7,2:2x57,2+2,86x2x64}{4+4+8+12+20+....+220}\)

c.\(\frac{2003x14+1998+2001x2002}{2002+2002x503+504x2002}\)

d.\(\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{28}\)

đ.3,54 x 73 + 0,23 x 25 + 3,54 x 27 + 0,17 x 25

e.\(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)

g.\(\left(1-\frac{1}{2}\right)x\left(1-\frac{1}{3}\right)x\left(1-\frac{1}{4}\right)x\left(1-\frac{1}{5}\right)\)

0