\(Cm:\dfrac{1}{\sqrt{x^4-x^2+4}+2x}+\dfrac{1}{\sqrt{x^4+20x^2+4}+5x}=0,vo.nghiem\forall x\in R\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ĐKXĐ: \(\left(2x^2-5x+2\right)\left(x^3+1\right)< >0\)

=>(2x-1)(x-2)(x+1)<>0

hay \(x\notin\left\{\dfrac{1}{2};2;-1\right\}\)

b: ĐKXĐ: x+5<>0

=>x<>-5

c: ĐKXĐ: x4-1<>0

hay \(x\notin\left\{1;-1\right\}\)

d: ĐKXĐ: \(x^4+2x^2-3< >0\)

=>\(x\notin\left\{1;-1\right\}\)

2 tháng 7 2017

mấy câu này chắc xài giá trị tuyệt đối

đăng ít thôi bn sợ quá :))

22 tháng 12 2018

vui giúp mình với nha mọi người

28 tháng 12 2018

Bài 1 : Đồ thị đi qua điểm M(4;-3) \(\Rightarrow\) y=-3 x=4. Ta được:

\(-3=4a+b\)

Đồ thị song song với đường d \(\Rightarrow\) \(a=a'=-\dfrac{2}{3}\) Ta được:

\(-3=4.-\dfrac{2}{3}+b\) \(\Rightarrow\) \(b=-\dfrac{1}{3}\)

Vậy: \(a=-\dfrac{2}{3};b=-\dfrac{1}{3}\)

b) (P) đi qua 3 điểm A B O, thay tất cả vào (P), ta được hpt:

\(\hept{\begin{cases}a+b+c=1\\a-b-c=-3\\0+0+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=-1\\b=2\\c=0\end{cases}}}\)

Bài 2 : Mình ko biết vẽ trên này, bạn theo hướng dẫn rồi tự làm nhé

Đồ thị có \(a< 0\) \(\Rightarrow\) Hàm số nghịch biến trên R

\(\Rightarrow\) Đồ thị có đỉnh \(I\left(1;4\right)\)

Chọn các điểm:

x 1 3 -1 2 -2

y 4 0 0 3 -5

7 tháng 11 2018

1) \(y=\dfrac{2x^2+1}{x^3-5x+4}\)

ĐK \(x^3-5x+4\ne0\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne\dfrac{\sqrt{17}-1}{2}\\x\ne\dfrac{-\sqrt{17}-1}{2}\end{matrix}\right.\)

TXĐ \(D=R\backslash\left\{1;\dfrac{\sqrt{17}-1}{2};\dfrac{-\sqrt{17}-1}{2}\right\}\)

2) \(y=\dfrac{\sqrt{x-2}}{\left(x-3\right)^3-1}\)

ĐK \(\left\{{}\begin{matrix}x-2\ge0\\x-3\ne1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\ne4\end{matrix}\right.\)

TXĐ \(D=[2;+\infty)\backslash\left\{4\right\}\)

3) \(y=\sqrt{x-2}-\dfrac{2}{\sqrt[3]{x-1}}\)

ĐK\(\left\{{}\begin{matrix}x+2\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne1\end{matrix}\right.\)

TXĐ \(D=[-2;+\infty)\backslash\left\{1\right\}\)

4) \(y=\dfrac{x^2+2}{\sqrt{\left(x+3\right)^2}}=\dfrac{x^2+2}{\left|x-3\right|}\)

ĐK \(x-3\ne0\Leftrightarrow x\ne3\)

TXĐ \(D=R\backslash\left\{3\right\}\)

5) \(y=\dfrac{\sqrt{x^2-2}}{\sqrt{x}\left(\sqrt{x}-3\right)}\)

ĐK \(\left\{{}\begin{matrix}x^2-2\ge0\\x>0\\\sqrt{x}-3\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in(-\infty;-\sqrt{2}]\cap[\sqrt{2};+\infty)\\x>0\\x\ne9\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x\ge\sqrt{2}\\x\ne9\end{matrix}\right.\)

TXĐ \(D=[\sqrt{2};+\infty)\backslash\left\{9\right\}\)

6) \(y=\sqrt{1-\sqrt{1+x}}\)

ĐK \(\left\{{}\begin{matrix}x+1\ge0\\1-\sqrt{1+x}\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge\sqrt{1+x}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\1\ge1+x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\le0\end{matrix}\right.\)

TXĐ \(D=\left[0;-1\right]\)

AH
Akai Haruma
Giáo viên
27 tháng 11 2018

Câu a:

ĐKXĐ: \(x\neq \pm 3\)

\(\left|\frac{x+5}{-x^2+9}\right|=2\Rightarrow \left[\begin{matrix} \frac{x+5}{-x^2+9}=2\\ \frac{x+5}{-x^2+9}=-2\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x+5=2(-x^2+9)\\ x+5=-2(-x^2+9)\end{matrix}\right.\Rightarrow \left[\begin{matrix} 2x^2+x-13=0\\ 2x^2-x-23=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=\frac{-1\pm \sqrt{105}}{4}\\ x=\frac{1\pm \sqrt{185}}{4}\end{matrix}\right.\) (đều thỏa mãn )

Vậy.......

AH
Akai Haruma
Giáo viên
28 tháng 11 2018

Câu b:

ĐKXĐ: \(x< 2\)

Ta có: \(\frac{4}{\sqrt{2-x}}-\sqrt{2-x}=2\)

\(\Rightarrow 4-(2-x)=2\sqrt{2-x}\)

\(\Leftrightarrow 4=(2-x)+2\sqrt{2-x}\)

\(\Leftrightarrow 5=(2-x)+2\sqrt{2-x}+1=(\sqrt{2-x}+1)^2\)

\(\Rightarrow \sqrt{2-x}+1=\sqrt{5}\) (do \(\sqrt{2-x}+1>0\) )

\(\Rightarrow \sqrt{2-x}=\sqrt{5}-1\)

\(\Rightarrow 2-x=6-2\sqrt{5}\)

\(\Rightarrow x=-4+2\sqrt{5}\) (thỏa mãn)

Vậy...........

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

Bạn lưu ý lần sau viết đầy đủ đề.

1. ĐKXĐ: $x\geq -\frac{3}{2}$

PT \(\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x^2=2x+3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 0\\ x^2-2x-3=(x-3)(x+1)=0\end{matrix}\right.\)

\(\Leftrightarrow x=3\)

AH
Akai Haruma
Giáo viên
9 tháng 8 2021

2. ĐKXĐ: $x^2+5x+2\geq 0$

PT $\Leftrightarrow (x^2+5x+4)-3\sqrt{x^2+5x+2}=6$

$\Leftrightarrow (x^2+5x+2)-3\sqrt{x^2+5x+2}-4=0$

Đặt $\sqrt{x^2+5x+2}=a(a\geq 0)$ thì:

$a^2-3a-4=0$

$\Leftrightarrow (a+1)(a-4)=0$

$\Leftrightarrow a=4$

$\Leftrightarrow a^2=x^2+5x+2=16$

$\Leftrightarrow x^2+5x-14=0$

$\Leftrightarrow (x-2)(x+7)=0$

$\Rightarrow x=2$ hoặc $x=-7$

 

6 tháng 4 2017

a) \(\dfrac{3x^2+1}{\sqrt{x-1}}=\dfrac{4}{\sqrt{x-1}}\)

ĐKXĐ: \(x>1\)

\(3x^2+1=4\)

\(3x^2=3\)

\(x^2=1\)

\(x=\pm1\)

=> Pt vô nghiệm

 

6 tháng 4 2017

b) ĐKXĐ: x>-4

\(x^2+3x+4=x+4\)

\(x^2+2x=0\)

\(x\left(x+2\right)=0\)

\(\left[{}\begin{matrix}x=0\\x+2=0\Leftrightarrow x=-2\end{matrix}\right.\)