Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{x-1}{x+3}+\frac{2}{x-3}+\frac{x^2+3}{9-x^2}\right):\left(\frac{2x-1}{2x+1}-1\right)\)\(\left(đkcđ:x\ne\pm3;x\ne-\frac{1}{2}\right)\)
\(=\left(\frac{\left(x-1\right).\left(x-3\right)+2.\left(x+3\right)-\left(x^2+3\right)}{x^2-9}\right):\left(\frac{2x-1-\left(2x+1\right)}{2x+1}\right)\)
\(=\frac{x^2-4x+3+2x+6-x^2-3}{x^2-9}:\frac{-2}{2x+1}\)
\(=\frac{-2x-6}{x^2-9}.\frac{2x+1}{-2}\)
\(=\frac{-2\left(x+3\right)}{\left(x-3\right).\left(x+3\right)}.\frac{2x+1}{-2}\)
\(=\frac{2x+1}{x-3}\)
b)\(\left|x+1\right|=\frac{1}{2}\Leftrightarrow\orbr{\begin{cases}x+1=\frac{1}{2}\\x+1=-\frac{1}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\left(koTMđkxđ\right)\\x=-\frac{3}{2}\left(TMđkxđ\right)\end{cases}}}\)
thay \(x=-\frac{3}{2}\) vào P tâ đc: \(P=\frac{2x+1}{x-3}=\frac{2.\left(-\frac{3}{2}\right)+1}{-\frac{3}{2}-3}=\frac{4}{9}\)
c)ta có:\(P=\frac{x}{2}\Leftrightarrow\frac{2x+1}{x-3}=\frac{x}{2}\)
\(\Rightarrow2.\left(2x+1\right)=x.\left(x-3\right)\)
\(\Leftrightarrow4x+2=x^2-3x\)
\(\Leftrightarrow x^2-7x-2=0\)
\(\Leftrightarrow x^2-2.\frac{7}{2}+\frac{49}{4}-\frac{57}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}\right)^2-\frac{57}{4}=0\)
\(\Leftrightarrow\left(x-\frac{7}{2}-\frac{\sqrt{57}}{2}\right).\left(x-\frac{7}{2}+\frac{\sqrt{57}}{2}\right)\)
bạn tự giải nốt nhé!!
d)\(x\in Z;P\in Z\Leftrightarrow\frac{2x+1}{x-3}\in Z\Leftrightarrow\frac{2x-6+7}{x-3}=2+\frac{7}{x-3}\in Z\)
\(2\in Z\Rightarrow\frac{7}{x-3}\in Z\Leftrightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
bạn tự làm nốt nhé
a, \(\left(\dfrac{x^2-4x+3+2x+6-x^2-3}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{2x-1-2x-1}{2x+1}\right)\)
\(=\dfrac{-2x+6}{\left(x+3\right)\left(x-3\right)}:\dfrac{-2}{2x+1}=\dfrac{-2\left(x-3\right)\left(2x+1\right)}{-2\left(x+3\right)\left(x-3\right)}=\dfrac{2x+1}{x+3}\)
b, \(\left|x+1\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}-1\\x=-\dfrac{1}{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\left(ktmđk\right)\\x=-\dfrac{3}{2}\end{matrix}\right.\)
Thay x = -3/2 ta được \(\dfrac{2\left(-\dfrac{3}{2}\right)+1}{-\dfrac{3}{2}+3}=\dfrac{-2}{\dfrac{3}{2}}=-\dfrac{4}{3}\)
c) \(\left(3x+5\right)^2-2\left(2x+3\right)\left(3x+5\right)+\left(2x+3\right)^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left[\left(3x+5\right)-\left(2x+3\right)\right]^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left(3x+5-2x-3\right)^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left(x+2\right)^2=\left(x+2\right)^3\)
\(\Leftrightarrow\left(x+2\right)^3-\left(x+2\right)^2=0\)
\(\Leftrightarrow\left(x+2\right)^2.\left(x+2-1\right)=0\)
\(\Leftrightarrow\left(x+2\right)^2.\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là: \(S=\left\{-2;-1\right\}\)
Do a\(\ge\)-1
=>2a+3\(\ge\)0
=>(a-3)2(2a+3)\(\ge0\)
=> (a2-6a+9)(2a+3)\(\ge0\)
=>2a3+3a2-12a2-18a+18a+27\(\ge0\)
=> 2a3-9a2+27\(\ge0\)
=>2a3\(\ge\)9a2-27
TT=>2b3\(\ge9b^2-27\)
2c3\(\ge9c^2-27\)
=>2M\(\ge\)9(a2+b2+c2)-81=9.9-81=0
=>\(M\ge0\)
ta có:\(a\ge-1\Rightarrow a+1\ge0\)
mà\(\left(a-2\right)^2\ge0\)
\(\Rightarrow\)\(\left(a+1\right)\left(a-2\right)^2\ge0\)
\(\Leftrightarrow\)\(\left(a+1\right)\left(a^2-4a+4\right)\)\(\ge0\)
\(\Leftrightarrow a^3-4a^2+4a+a^2-4a+4\ge0\)
\(\Leftrightarrow a^3+4-3a^2\ge0\)
\(\Leftrightarrow a^3+4\ge3a^2\)
tương tự:\(b^3+4\ge3b^2;c^3+4\ge3c^2\)
\(\Rightarrow a^3+b^3+c^3+12\ge3\left(a^2+b^2+c^2\right)\)
mà\(a^2+b^2+c^2=9\)
\(\Rightarrow a^3+b^3+c^3\ge27-12=15\)
Dấu "=" xayr ra khi:
\(\left(a;b;c\right)=\left(-1;2;2\right);\left(2;2;-1\right);\left(2;-1;2\right)\)
1/ a/ \(\left(x+y\right)^3=\left(x+y\right)\left(x+y\right)^2=\left(x+y\right)\left(x^2+2xy+b^2\right)=x^3+2x^2y+x^2y+xy^2+2xy^2+y^3=x^3+3x^2y+3xy^2+y^3\)
b/ \(\left(x-y\right)^3=\left(x-y\right)\left(x-y\right)^2=\left(x-y\right)\left(x^2-2xy+y^2\right)=x^3-2x^2y-x^2y+2xy^2+xy^2-y^3=x^3-3x^2y+3xy^2+y^3\)2/
a/ \(x\left(8x-2\right)-8x^2+12=0\)
\(\Leftrightarrow8x^2-2x-8x^2+12=0\)
\(\Leftrightarrow-2x+12=0\)
\(\Leftrightarrow x=6\)
Vậy ...
b/ \(\left(x-1\right)^3-x\left(x^2-3x+1\right)=18\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+3x^2-x=18\)
\(\Leftrightarrow2x-1=18\)
\(\Leftrightarrow x=\dfrac{19}{2}\)
Vậy...
3/ a, \(25-x^2=5^2-x^2=\left(5-x\right)\left(5+x\right)\)
b/ \(4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x-1\right)^2\)
c/ \(9x^2+6xy+y^2=\left(3x\right)^2+2.3x.y+y^2=\left(3x+y\right)^2\)
e, (x-1)(x2 + x + 1)-x(x+2)(x-2) = 5
x(x2 +x + 1 ) - (x2 + x +1 )- [ x (x2 - 4)] = 5
x3 +x2 +x - x2 - x - 1 - x3 +4x = 5
4x - 1 = 5
4x = 6
x =\(\dfrac{3}{2}\)
f, (x-1)3 - (x+3)(x2 - 3x +9 ) +3(x2 - 4) = 2
x - 3x2 +3x - 1 - [( x3 - 3x2 + 9x) + (3x2 - 9x +27)] = 2
x3 - 3x2 + 3x - 1 -x3 +3x2 -9x - 3x2 +9x - 27 +3x2 - 12 = 2
3x - 1 - 27 - 12 = 2
3x = 42
x = 14
1. biến đổi vế trái
= a2x2 + a2y2 + b2x2 + b2y2
= (ax -by)2 + (bx+ ay)2 - 2abxy + 2abxy
= (ax -by)2 + ( bx + ay)2 = vế phải( dpcm)
Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@
B1: Phân tích thành nhân tử:
a) \(6x^2+9x=3x\left(2x+3\right)\)
b) \(4x^2+8x=4x\left(x+2\right)\)
c) \(5x^2+10x=5x\left(x+2\right)\)
d) \(2x^2-8x=2x\left(x-4\right)\)
e) \(5x-15y=5\left(x-3y\right)\)
f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)
\(=\left(x-1-2y\right)\left(x-1+2y\right)\)
h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)
i) \(9x^2-18x+9=\left(3x-3\right)^2\)
k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)
m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)
\(=-\left(2x-y\right)^2\)
n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)
\(=\left(x-31\right)\left(x+1\right)\)
o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)
\(=\left(2+x\right)\left(8+x\right)\)
p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)\)
Bài 1 :
a ) \(6x^2+9x=3x\left(x+3\right)\)
b ) \(4x^2+8x=4x\left(x+2\right)\)
c ) \(5x^2+10x=5x\left(x+2\right)\)
d ) \(2x^2-8x=2x\left(x-4\right)\)
e ) \(5x-15y=5\left(x-3y\right)\)
f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)
i ) \(9x^2-18x+9=\left(3x-3\right)^2\)
k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)
l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)
m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)
n ) \(\left(x-15\right)^2=x^2-30x+15^2\)
o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)
Bài 2 :
a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)
b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)
c ) \(2x+x^2-2y-2xy=......................\)
d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
a) HS tự làm
b) 1 − q 2 2 q . q 2 q + 3 − 1 + 3 q 2 − 14 q + 3 2 q 2 + 6 q = − ( q − 2 ) 2 − 1 2 < 0 với mọi q ≠ 0 và q ≠ - 3 .